Carbon (C)

Carbon occurs as several allotropes, notably graphite (soft, conductive) and diamond (extremely hard, insulating). It forms the backbone of organic chemistry and is essential to life.

Atomic Number
6
Atomic Mass
12.011
Phase (STP)
Solid
Block
P
Electronegativity (Pauling)
2.55

Bohr Atomic Model

Protons
6
Neutrons
6
Electrons
6
Identity
Atomic Number6
SymbolC
NameCarbon
Group14
Period2
Position
Period2
Group Label14
Grid X14
Grid Y2
Physical Properties
Atomic Mass (u)12.011
Density (g/cm³)2.267
Melting Point (K)4098 K 3549.9 °C
Boiling Point4098 K 4027 °C
Phase at STPSolid
CategoryOther Non-Metals
Liquid Density (g/cm³)
Molar Volume (cm³/mol)5.3
Emission Spectrum (nm)
Discovery
English NameCarbon
English Pronunciationˈkɑːrbən
Latin NameCarbo / Carboneum
Latin PronunciationCAR-bo / car-BOH-neh-um
Year
Discoverer-
CountryWorldwide
CAS Number7440-44-0
CID Number
RTECS Number
Atomic Properties
Electron ShellK2 L4
Electron Configuration[He] 2s^22p^2
Oxidation States-4 -3 -2 -1 +1 +2 +3 +4
Ion ChargeC4−, C4+, C2+
Ionization Potential (eV)11.26
Electronegativity (Pauling)2.55
Electron Affinity (kJ/mol)121.776
Electrons6
Protons6
Neutrons6
ValenceIV
BlockP
Atomic Radius (pm)70
Covalent Radius (pm)75
van der Waals Radius (pm)170
Thermodynamic Properties
PhaseSOLID
Heat of Fusion (kJ/mol)
Specific Heat (J/g·K)0.709
Thermal Expansion (1/K)
Heat of Vaporization (kJ/mol)
Mechanical Properties
Brinell Hardness
Mohs Hardness
Vickers Hardness
Bulk Modulus (GPa)
Young's Modulus (GPa)
Shear Modulus (GPa)
Poisson Ratio
Sound Speed (m/s)
Refractive Index
Thermal Conductivity (W/m·K)
Electromagnetic Properties
Electrical Conductivity (S/m)
Electrical TypeALLOTROPE-DEPENDENT
Magnetic TypeDIAMAGNETIC
Volume Magnetic Susceptibility
Mass Magnetic Susceptibility
Molar Magnetic Susceptibility
Resistivity (Ω·m)
Superconducting Point (K)
Crystal Properties
StructureGraphite: Hexagonal (hcp); Diamond: Face-centered cubic
SystemVARIES
Space Group
a (Å)
b (Å)
c (Å)
α (°)
β (°)
γ (°)
Debye Temperature (K)
Nuclear Properties
RadioactiveNo
Half-life
Lifetime
Neutron Cross-section (barn)
Safety Information
Health Hazard
Reactivity Hazard
Specific HazardFinely divided dust may be combustible
Prevalence
Universe0.5
Sun0.3
Oceans0
Human Body18.5
Earth Crust0.18
Meteorites


FAQs about Carbon

Common allotropes include diamond (each C is sp3 tetrahedrally bonded; hardest natural material; electrical insulator), graphite (planar sp2 sheets with delocalized \(\pi\)-electrons; lubricating, electrically conductive), graphene (single sheet of graphite; exceptional strength and mobility), fullerenes (closed cages like C60), and carbon nanotubes (rolled graphene; high tensile strength).

Different bonding (\(\mathrm{sp^3}\) vs \(\mathrm{sp^2}\)) explains contrasting hardness and conductivity.

Carbon forms three key hybrid states:

  • sp: linear, bond angle \(180^\circ\); example: \(\mathrm{HC\equiv CH}\).
  • sp2: trigonal planar, \(120^\circ\); example: \(\mathrm{H_2C{=}CH_2}\).
  • sp3: tetrahedral, \(\approx 109.5^\circ\); example: \(\mathrm{CH_4}\).

Hybridization governs geometry, bond lengths/strengths, and the presence of \(\pi\)-bonds.

In graphite, each carbon is sp2-hybridized with one electron in a p-orbital forming a delocalized \(\pi\)-system across the sheet, enabling electron mobility (conductivity). In diamond, all four valence electrons are localized in \(\mathrm{sp^3}\) \(\sigma\)-bonds, leaving no free carriers, so it is an insulator.

Carbon shows a wide range of oxidation states:

  • −4: \(\mathrm{CH_4}\) (methane)
  • 0: elemental carbon (graphite, diamond)
  • +2: \(\mathrm{CO}\) (carbon monoxide)
  • +4: \(\mathrm{CO_2}\), carbonates like \(\mathrm{CaCO_3}\)

The versatility of C results from its ability to form multiple bonds and stable chains/rings.

Complete combustion (excess oxygen):

  • \(\mathrm{C(s) + O_2(g) \rightarrow CO_2(g)}\)
  • \(\mathrm{CH_4(g) + 2\,O_2(g) \rightarrow CO_2(g) + 2\,H_2O(l)}\)

Limited oxygen can produce CO:

\(\mathrm{2\,C(s) + O_2(g) \rightarrow 2\,CO(g)}\)

Dissolved CO2 establishes a series of equilibria that buffer pH:

\(\mathrm{CO_2(aq) + H_2O(l) \rightleftharpoons H_2CO_3(aq) \rightleftharpoons HCO_3^-(aq) + H^+(aq) \rightleftharpoons CO_3^{2-}(aq) + 2H^+(aq)}\)

This system is central to blood buffering and natural waters (e.g., hard water, cave formation).

\(^{14}\!\mathrm{C}\) is produced in the atmosphere and incorporated into living organisms. After death, \(^{14}\!\mathrm{C}\) decays (\(T_{1/2} \approx 5730\,\text{yr}\)). Age is estimated by:

\(\displaystyle t = \frac{1}{\lambda}\ln\!\left(\frac{N_0}{N}\right)\), where \(\lambda = \frac{\ln 2}{T_{1/2}}\).

\(N_0\) is the initial activity and \(N\) the measured activity of the sample.

Fullerenes (e.g., C60) are closed carbon cages with delocalized \(\pi\)-systems; they show interesting redox/host–guest chemistry. Carbon nanotubes are cylindrical graphene sheets with exceptional mechanical strength and tunable electrical properties (metallic or semiconducting), enabling applications in composites, nanoelectronics, and sensing.

Carbon–carbon bonds are strong and directional; C can form single (\(\sigma\)), double (\(\sigma+\pi\)), and triple (\(\sigma+2\pi\)) bonds. Catenation (C–C chain/ring formation) and valency 4 allow an immense diversity of structures—the basis of organic chemistry.

The carbon cycle moves carbon among atmosphere (CO2), biosphere (organic matter), hydrosphere (dissolved inorganic/organic carbon), and geosphere (carbonates, fossil fuels). Key steps include photosynthesis:

\(\mathrm{6\,CO_2 + 6\,H_2O \xrightarrow{light} C_6H_{12}O_6 + 6\,O_2}\)

and respiration/combustion returning CO2 to the atmosphere.