Iron (Fe)

Iron is a lustrous, silvery-gray transition metal essential for steels and biology (hemoglobin). It is ferromagnetic and rusts readily in moist air.

Atomic Number
26
Atomic Mass
55.845
Phase (STP)
Solid
Block
D
Electronegativity (Pauling)
1.83

Bohr Atomic Model

Protons
26
Neutrons
30
Electrons
26
Identity
Atomic Number26
SymbolFe
NameIron
Group8
Period4
Position
Period4
Group Label8
Grid X8
Grid Y4
Physical Properties
Atomic Mass (u)55.845
Density (g/cm³)7.87
Melting Point (K)1811 K 1538 °C
Boiling Point3134 K 2861 °C
Phase at STPSolid
CategoryTransition Metals
Liquid Density (g/cm³)6.98
Molar Volume (cm³/mol)7.09
Emission Spectrum (nm)
Discovery
English NameIron
English Pronunciationˈaɪərn
Latin NameFerrum
Latin PronunciationFEH-rum
Year3500
Discoverer-
Country
CAS Number7439-89-6
CID Number23925
RTECS Number
Atomic Properties
Electron ShellK2 L8 M14 N2
Electron Configuration[Ar] 3d^64s^2
Oxidation States-2 -1 +1 +2 +3 +4 +5 +6
Ion ChargeFe²+, Fe³+
Ionization Potential (eV)7.902
Electronegativity (Pauling)1.83
Electron Affinity (kJ/mol)14.569
Electrons26
Protons26
Neutrons30
ValenceII, III
BlockD
Atomic Radius (pm)156
Covalent Radius (pm)124
van der Waals Radius (pm)204
Thermodynamic Properties
PhaseSOLID
Heat of Fusion (kJ/mol)13.81
Specific Heat (J/g·K)0.449
Thermal Expansion (1/K)0
Heat of Vaporization (kJ/mol)340
Mechanical Properties
Brinell Hardness490
Mohs Hardness4
Vickers Hardness608
Bulk Modulus (GPa)170
Young's Modulus (GPa)211
Shear Modulus (GPa)82
Poisson Ratio0.29
Sound Speed (m/s)5120
Refractive Index
Thermal Conductivity (W/m·K)80.2
Electromagnetic Properties
Electrical Conductivity (S/m)10000000
Electrical TypeCONDUCTOR
Magnetic TypeFERROMAGNETIC
Volume Magnetic Susceptibility
Mass Magnetic Susceptibility
Molar Magnetic Susceptibility
Resistivity (Ω·m)0
Superconducting Point (K)
Crystal Properties
StructureBody-centered cubic (bcc) — α-Fe
SystemCUBIC
Space GroupIm-3m (No. 229)
a (Å)2.8665
b (Å)2.8665
c (Å)2.8665
α (°)90
β (°)90
γ (°)90
Debye Temperature (K)470
Nuclear Properties
RadioactiveNo
Half-life
Lifetime
Neutron Cross-section (barn)2.56
Safety Information
Health Hazard
Reactivity Hazard
Specific HazardFine powder can ignite; rusts in moist air
Prevalence
Universe0.11
Sun0.14
Oceans
Human Body0.006
Earth Crust5
Meteorites


FAQs about Iron

Iron (Fe) is a transition metal in Group 8, Period 4, and the d-block. A commonly cited ground-state configuration is [Ar] 3d6 4s2. The partially filled 3d subshell underlies many of iron’s magnetic and catalytic properties.

Rusting is an electrochemical corrosion process requiring oxygen and water. Iron oxidizes to hydrated iron(III) oxides/oxyhydroxides, commonly written as Fe2O3·xH2O. A simplified overall step is:

\(4\,\mathrm{Fe} + 3\,\mathrm{O_2} + 6\,\mathrm{H_2O} \;\to\; 4\,\mathrm{Fe(OH)_3}\;\xrightarrow{\text{dehydrate}}\; \mathrm{Fe_2O_3\cdot xH_2O}\)

Salts (electrolytes) accelerate rusting by enhancing ionic conduction.

The most common states are +2 (ferrous) and +3 (ferric). Iron can also reach +6 in ferrates (e.g., \(\mathrm{FeO_4^{2-}}\)). A simple redox couple is:

\(\mathrm{Fe^{2+}} \;\rightleftharpoons\; \mathrm{Fe^{3+}} + e^-\)

These redox changes are central to catalysis, bioinorganic chemistry, and corrosion.

Iron is produced by reduction of iron oxides (hematite/magnetite) using carbon monoxide formed from coke. Key simplified reactions are:

  • \(\mathrm{C} + \mathrm{O_2} \to \mathrm{CO_2};\quad \mathrm{CO_2} + \mathrm{C} \to 2\,\mathrm{CO}\)

  • \(\mathrm{Fe_2O_3} + 3\,\mathrm{CO} \to 2\,\mathrm{Fe} + 3\,\mathrm{CO_2}\)

The molten product (pig iron) is then refined to make steel.

Below its Curie temperature (about 770 °C), exchange interactions align unpaired 3d electrons into domains, giving ferromagnetism. Above the Curie point, thermal agitation destroys long-range order and iron becomes paramagnetic.

Steel is an alloy of iron with controlled amounts of carbon (typically 0.02–2.1%) and other elements (Mn, Cr, Ni, Mo, etc.). Alloying tailors strength, hardness, toughness, corrosion resistance, and other properties. For example, stainless steel contains ≥10.5% Cr forming a protective Cr2O3 layer.

In hemoglobin, iron is bound in a heme porphyrin and reversibly binds oxygen for transport in blood. A simplified binding step is:

\(\mathrm{Fe^{2+}\! -\! heme} + \mathrm{O_2} \;\rightleftharpoons\; \mathrm{Fe^{2+}\! -\! O_2\! -\! heme}\)

Iron also cycles between Fe(II)/Fe(III) in enzymes for electron transfer and catalysis.

Common strategies include:

  • Barriers: paints, polymer coatings, oil/grease
  • Alloying: stainless steels (Cr, Ni) to form passive films
  • Galvanization: coating with Zn; zinc acts as a sacrificial anode
  • Cathodic protection: attaching a more active metal or using impressed current

Important oxides include:

  • FeO (wüstite, Fe(II))
  • Fe2O3 (hematite, Fe(III))
  • Fe3O4 (magnetite, mixed Fe(II)/Fe(III))

Magnetite is ferrimagnetic and often used in magnetic recording and as a catalyst support.

With dilute acids, iron releases hydrogen:

\(\mathrm{Fe} + 2\,\mathrm{HCl} \;\to\; \mathrm{FeCl_2} + \mathrm{H_2}\uparrow\)

The thermite reaction (aluminothermy) reduces iron(III) oxide to molten iron:

\(\mathrm{Fe_2O_3} + 2\,\mathrm{Al} \;\to\; 2\,\mathrm{Fe} + \mathrm{Al_2O_3}\;\; (\Delta H \ll 0)\)

This is used for rail welding and metallurgical repairs.