Nitrogen (N)

Nitrogen is a colorless, odorless, and tasteless diatomic gas (N₂) making up about 78% of Earth's atmosphere. It is essential for life, forming a major part of amino acids and nucleic acids.

Atomic Number
7
Atomic Mass
14.007
Phase (STP)
Gas
Block
P
Electronegativity (Pauling)
3.04

Bohr Atomic Model

Protons
7
Neutrons
7
Electrons
7
Identity
Atomic Number7
SymbolN
NameNitrogen
Group15
Period2
Position
Period2
Group Label15
Grid X15
Grid Y2
Physical Properties
Atomic Mass (u)14.007
Density (g/cm³)0.001145
Melting Point (K)63.2 K -210 °C
Boiling Point77.355 K -195.79 °C
Phase at STPGas
CategoryOther Non-Metals
Liquid Density (g/cm³)0.808
Molar Volume (cm³/mol)22414
Emission Spectrum (nm)174 149 120
Discovery
English NameNitrogen
English Pronunciationˈnaɪtrədʒən
Latin NameNitrogenium
Latin Pronunciationny-tro-GE-ni-um
Year1772
DiscovererDaniel Rutherford
CountryScotland
CAS Number7727-37-9
CID Number947
RTECS NumberQW9700000
Atomic Properties
Electron ShellK2 L5
Electron Configuration[He] 2s^22p^3
Oxidation States-3 +1 +2 +3 +4 +5
Ion ChargeN³−
Ionization Potential (eV)14.534
Electronegativity (Pauling)3.04
Electron Affinity (kJ/mol)-7
Electrons7
Protons7
Neutrons7
ValenceV
BlockP
Atomic Radius (pm)56
Covalent Radius (pm)71
van der Waals Radius (pm)155
Thermodynamic Properties
PhaseGAS
Heat of Fusion (kJ/mol)0.72
Specific Heat (J/g·K)1.04
Thermal Expansion (1/K)
Heat of Vaporization (kJ/mol)5.57
Mechanical Properties
Brinell Hardness
Mohs Hardness
Vickers Hardness
Bulk Modulus (GPa)
Young's Modulus (GPa)
Shear Modulus (GPa)
Poisson Ratio
Sound Speed (m/s)
Refractive Index1.0003
Thermal Conductivity (W/m·K)0.0258
Electromagnetic Properties
Electrical Conductivity (S/m)
Electrical TypeINSULATOR
Magnetic TypeDIAMAGNETIC
Volume Magnetic Susceptibility0
Mass Magnetic Susceptibility
Molar Magnetic Susceptibility
Resistivity (Ω·m)
Superconducting Point (K)
Crystal Properties
StructureHexagonal (hcp) — solid β-Nitrogen
SystemHEXAGONAL
Space Group
a (Å)
b (Å)
c (Å)
α (°)
β (°)
γ (°)
Debye Temperature (K)90
Nuclear Properties
RadioactiveNo
Half-life
Lifetime
Neutron Cross-section (barn)1.9
Safety Information
Health HazardAsphyxiant in high concentrations
Reactivity HazardInert under most conditions
Specific HazardCan cause suffocation in enclosed spaces
Prevalence
Universe0.1
Sun0.1
Oceans0.0005
Human Body3.2
Earth Crust0.002
Meteorites


FAQs about Nitrogen

Nitrogen exists as a diatomic molecule with a very strong triple bond \(\mathrm{N\equiv N}\). The bond requires a high activation energy to break, so most reactions of \(\mathrm{N_2}\) proceed slowly at ambient conditions unless catalyzed or at elevated temperature/pressure.

The ground-state configuration is \([He]2s^2 2p^3\) with three unpaired p-electrons. Nitrogen displays oxidation states from \(-3\) to \(+5\):

  • \(-3\): \(\mathrm{NH_3}\), amines
  • \(+1\) to \(+4\): \(\mathrm{N_2O}\), \(\mathrm{NO}\), \(\mathrm{N_2O_3}\), \(\mathrm{NO_2}\)
  • \(+5\): \(\mathrm{HNO_3}\), \(\mathrm{NO_3^-}\)

The Haber–Bosch synthesis uses an Fe-based catalyst at high pressure and moderate temperature:

\(\mathrm{N_2(g) + 3\,H_2(g) \rightleftharpoons 2\,NH_3(g)}\;\;\Delta H^{\circ} < 0\)

High pressure favors ammonia formation (fewer moles of gas), while lower temperature favors equilibrium yield but slows kinetics; practical conditions balance both.

Certain microbes (e.g., Rhizobium in legume root nodules) reduce atmospheric \(\mathrm{N_2}\) to ammonia via nitrogenase:

\(\mathrm{N_2 + 8\,H^+ + 8\,e^- + 16\,ATP \rightarrow 2\,NH_3 + H_2 + 16\,ADP + 16\,P_i}\)

This converts inert nitrogen into bioavailable forms, supporting the biosynthesis of amino acids and nucleotides.

The nitrogen cycle includes:

  1. Fixation (biological/industrial/lightning) to \(\mathrm{NH_3/NO_3^-}\)
  2. Nitrification: \(\mathrm{NH_4^+ \rightarrow NO_2^- \rightarrow NO_3^-}\)
  3. Assimilation into biomolecules
  4. Ammonification: organic N \(\rightarrow\) \(\mathrm{NH_4^+}\)
  5. Denitrification: \(\mathrm{NO_3^- \rightarrow N_2}\) returning N to the atmosphere

The Ostwald process oxidizes ammonia:

  1. \(\mathrm{4\,NH_3 + 5\,O_2 \xrightarrow{Pt/Rh} 4\,NO + 6\,H_2O}\)
  2. \(\mathrm{2\,NO + O_2 \rightarrow 2\,NO_2}\)
  3. \(\mathrm{3\,NO_2 + H_2O \rightarrow 2\,HNO_3 + NO}\) (with absorption and recycling)

Resulting \(\mathrm{HNO_3}\) is a strong acid and oxidizing agent.

Nitrogen’s variable oxidation states lead to several oxides with distinct properties:

  • \(\mathrm{N_2O}\) (dinitrogen monoxide): anesthetic, mild oxidizer
  • \(\mathrm{NO}\) (nitric oxide): signaling molecule, oxidizes to \(\mathrm{NO_2}\)
  • \(\mathrm{NO_2}\) (nitrogen dioxide): brown, toxic, forms \(\mathrm{HNO_3}\)

These species participate in atmospheric chemistry and acid rain formation.

Nitrates \(\mathrm{NO_3^-}\) and nitrites \(\mathrm{NO_2^-}\) are oxyanions of nitrogen. Excess agricultural runoff of nitrates can cause eutrophication, leading to algal blooms and hypoxia in water bodies. Nitrite can also convert hemoglobin to methemoglobin, reducing oxygen transport.

Liquid nitrogen (b.p. \(\approx 77\,\mathrm{K}\)) is used for cryogenics, food freezing, biological sample storage, and classroom demonstrations.

  • Wear insulated gloves and face protection; avoid skin contact (frostbite).
  • Use in ventilated areas; nitrogen gas can displace oxygen and cause asphyxiation.
  • Never seal in a closed container—rapid boil-off can cause explosion.

In the classic test, add freshly prepared \(\mathrm{FeSO_4}\) to the solution, then carefully layer concentrated \(\mathrm{H_2SO_4}\) down the side of the tube. A brown ring appears at the interface due to formation of \([\mathrm{Fe(H_2O)_5NO}]^{2+}\), indicating \(\mathrm{NO_3^-}\).