NCERT Exemplar Solutions
Class 9 - Mathematics - CHAPTER 1: NUMBER SYSTEMS
Exercise 1.4: Long Answer Questions

Question. 1

Express \(0.6 + 0.\overline{7} + 0.4\overline{7}\) in the form \(\dfrac{p}{q}\), where \(p\) and \(q\) are integers and \(q \ne 0\).

Answer:

\(0.6 = \dfrac{6}{10} = \dfrac{3}{5}\).

Let \(0.\overline{7} = x\). Then \(10x = 7.\overline{7}\).

Subtracting, \(10x - x = 7.\overline{7} - 0.\overline{7}\Rightarrow 9x = 7\Rightarrow x = \dfrac{7}{9}\).

Let \(0.4\overline{7} = y\). Then \(y = 0.4 + 0.0\overline{7}\).

\(0.4 = \dfrac{4}{10} = \dfrac{2}{5}\) and \(0.0\overline{7} = \dfrac{1}{10}\cdot 0.\overline{7} = \dfrac{1}{10}\cdot\dfrac{7}{9} = \dfrac{7}{90}\).

So \(y = \dfrac{2}{5} + \dfrac{7}{90} = \dfrac{36}{90} + \dfrac{7}{90} = \dfrac{43}{90}\).

Now, \(0.6 + 0.\overline{7} + 0.4\overline{7} = \dfrac{3}{5} + \dfrac{7}{9} + \dfrac{43}{90}\).

Taking LCM \(= 90\): \(\dfrac{3}{5} = \dfrac{54}{90}\), \(\dfrac{7}{9} = \dfrac{70}{90}\).

Sum \(= \dfrac{54}{90} + \dfrac{70}{90} + \dfrac{43}{90} = \dfrac{167}{90}\).

Question. 2

Simplify:

\(\dfrac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}}-\dfrac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}}-\dfrac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}}\).

Answer:

Rationalise each term using the conjugate of the denominator.

\(\dfrac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} = \dfrac{7\sqrt{3}(\sqrt{10}-\sqrt{3})}{(\sqrt{10}+\sqrt{3})(\sqrt{10}-\sqrt{3})} = \dfrac{7\sqrt{3}(\sqrt{10}-\sqrt{3})}{10-3}\).

So \(\dfrac{7\sqrt{3}}{\sqrt{10}+\sqrt{3}} = \sqrt{3}(\sqrt{10}-\sqrt{3}) = \sqrt{30}-3\).

\(\dfrac{2\sqrt{5}}{\sqrt{6}+\sqrt{5}} = \dfrac{2\sqrt{5}(\sqrt{6}-\sqrt{5})}{6-5} = 2\sqrt{5}(\sqrt{6}-\sqrt{5}) = 2\sqrt{30}-10\).

\(\dfrac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}} = \dfrac{3\sqrt{2}(\sqrt{15}-3\sqrt{2})}{15-(3\sqrt{2})^2} = \dfrac{3\sqrt{2}(\sqrt{15}-3\sqrt{2})}{15-18} = \dfrac{3\sqrt{2}(\sqrt{15}-3\sqrt{2})}{-3}\).

So \(\dfrac{3\sqrt{2}}{\sqrt{15}+3\sqrt{2}} = -\sqrt{2}(\sqrt{15}-3\sqrt{2}) = -(\sqrt{30}-6) = -\sqrt{30}+6\).

Now the given expression becomes:

\((\sqrt{30}-3) - (2\sqrt{30}-10) - (-\sqrt{30}+6)\).

= \(\sqrt{30}-3-2\sqrt{30}+10+\sqrt{30}-6\).

= \((\sqrt{30}-2\sqrt{30}+\sqrt{30}) + ( -3+10-6)\) = \(0 + 1\) = \(1\).

Question. 3

If \(\sqrt{2}=1.414\) and \(\sqrt{3}=1.732\), find the value of

\(\dfrac{4}{3\sqrt{3}-2\sqrt{2}}+\dfrac{3}{3\sqrt{3}+2\sqrt{2}}\).

Answer:

Rationalise each fraction using the conjugate of the denominator.

\(\dfrac{4}{3\sqrt{3}-2\sqrt{2}} = \dfrac{4(3\sqrt{3}+2\sqrt{2})}{(3\sqrt{3})^2-(2\sqrt{2})^2} = \dfrac{4(3\sqrt{3}+2\sqrt{2})}{27-8} = \dfrac{4(3\sqrt{3}+2\sqrt{2})}{19}\).

\(\dfrac{3}{3\sqrt{3}+2\sqrt{2}} = \dfrac{3(3\sqrt{3}-2\sqrt{2})}{(3\sqrt{3})^2-(2\sqrt{2})^2} = \dfrac{3(3\sqrt{3}-2\sqrt{2})}{27-8} = \dfrac{3(3\sqrt{3}-2\sqrt{2})}{19}\).

Add them:

\(\dfrac{4(3\sqrt{3}+2\sqrt{2})}{19}+\dfrac{3(3\sqrt{3}-2\sqrt{2})}{19} = \dfrac{12\sqrt{3}+8\sqrt{2}+9\sqrt{3}-6\sqrt{2}}{19}\).

= \(\dfrac{21\sqrt{3}+2\sqrt{2}}{19}\).

Now substitute \(\sqrt{3}=1.732\), \(\sqrt{2}=1.414\):

Numerator \(= 21(1.732) + 2(1.414) = 36.372 + 2.828 = 39.200\).

Value \(= \dfrac{39.200}{19} = 2.063157\ldots \approx 2.063\).

Question. 4

If \(a=\dfrac{3+\sqrt{5}}{2}\), find the value of \(a^2+\dfrac{1}{a^2}\).

Answer:

First find \(\dfrac{1}{a}\).

\(a=\dfrac{3+\sqrt{5}}{2}\Rightarrow \dfrac{1}{a}=\dfrac{2}{3+\sqrt{5}}\).

Rationalise:

\(\dfrac{2}{3+\sqrt{5}}\cdot\dfrac{3-\sqrt{5}}{3-\sqrt{5}} = \dfrac{2(3-\sqrt{5})}{9-5} = \dfrac{2(3-\sqrt{5})}{4} = \dfrac{3-\sqrt{5}}{2}\).

So \(a+\dfrac{1}{a} = \dfrac{3+\sqrt{5}}{2}+\dfrac{3-\sqrt{5}}{2} = \dfrac{6}{2}=3\).

Square both sides:

\((a+\dfrac{1}{a})^2 = a^2 + 2 + \dfrac{1}{a^2}\).

\(3^2 = a^2 + 2 + \dfrac{1}{a^2}\Rightarrow 9 = a^2 + \dfrac{1}{a^2} + 2\).

Therefore, \(a^2 + \dfrac{1}{a^2} = 7\).

Question. 5

If \(x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\) and \(y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\), find the value of \(x^2+y^2\).

Answer:

Note that \(xy=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=1\). Hence \(y=\dfrac{1}{x}\).

Now compute \(x+y\):

\(x+y=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\).

Common denominator \((\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2}) = 3-2 = 1\).

So \(x+y = (\sqrt{3}+\sqrt{2})^2 + (\sqrt{3}-\sqrt{2})^2\).

\((\sqrt{3}+\sqrt{2})^2 = 3+2+2\sqrt{6}=5+2\sqrt{6}\).

\((\sqrt{3}-\sqrt{2})^2 = 3+2-2\sqrt{6}=5-2\sqrt{6}\).

Therefore \(x+y = (5+2\sqrt{6})+(5-2\sqrt{6})=10\).

Since \(y=\dfrac{1}{x}\), we have \(x+\dfrac{1}{x}=10\).

Square both sides:

\((x+\dfrac{1}{x})^2 = x^2 + 2 + \dfrac{1}{x^2} = x^2 + y^2 + 2\).

\(10^2 = x^2 + y^2 + 2\Rightarrow 100 = x^2 + y^2 + 2\).

Hence \(x^2 + y^2 = 98\).

Question. 6

Simplify: \((256)^{-(4^{-3/2})}\).

Answer:

Evaluate \(4^{-3/2}\):

\(4^{-3/2} = \dfrac{1}{4^{3/2}} = \dfrac{1}{(\sqrt{4})^3} = \dfrac{1}{2^3} = \dfrac{1}{8}\).

So the exponent becomes \(-(4^{-3/2}) = -\dfrac{1}{8}\).

Thus \((256)^{-(4^{-3/2})} = 256^{-1/8}\).

Write \(256\) as a power of 2: \(256 = 2^8\).

Then \(256^{-1/8} = (2^8)^{-1/8} = 2^{-1} = \dfrac{1}{2}\).

Question. 7

Find the value of

\(\dfrac{4}{(216)^{-2/3}}+\dfrac{1}{(256)^{-3/4}}+\dfrac{2}{(243)^{-1/5}}\).

Answer:

Use \(\dfrac{1}{a^{-m}} = a^{m}\).

\(\dfrac{4}{(216)^{-2/3}} = 4\cdot 216^{2/3}\).

\(216 = 6^3\Rightarrow 216^{2/3} = (6^3)^{2/3} = 6^2 = 36\).

So first term \(= 4\cdot 36 = 144\).

\(\dfrac{1}{(256)^{-3/4}} = 256^{3/4}\).

\(256 = 2^8\Rightarrow 256^{3/4} = (2^8)^{3/4} = 2^{6} = 64\).

\(\dfrac{2}{(243)^{-1/5}} = 2\cdot 243^{1/5}\).

\(243 = 3^5\Rightarrow 243^{1/5} = 3\). So third term \(= 2\cdot 3 = 6\).

Total \(= 144 + 64 + 6 = 214\).

NCERT Exemplar Solutions Class 9 – Mathematics – CHAPTER 1: NUMBER SYSTEMS – Exercise 1.4: Long Answer Questions | Detailed Answers