NCERT Exemplar Solutions
Class 11 - Mathematics
Chapter 5: COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Questions

Question. 28

What is the conjugate of \( \dfrac{2 - i}{(1 - 2i)^2} \)?

Answer:

-\(\dfrac{2}{25}\) − i \(\dfrac{11}{25}\)

Question. 29

If \(|z_1| = |z_2|\), is it necessary that \(z_1 = z_2\)?

Answer:

No

Question. 30

If \( \dfrac{(a^2+1)^2}{2a - i} = x + iy \), what is the value of \(x^2 + y^2\)?

Answer:

\( \dfrac{(a^2+1)^4}{4a^2 + 1} \)

Question. 31

Find \(z\) if \(|z| = 4\) and \(\arg(z) = \dfrac{5\pi}{6}\).

Answer:

-2\sqrt{3} + 2i

Question. 32

Find \( \left| \dfrac{(1+i)(2+i)}{3+i} \right| \).

Answer:

1

Question. 33

Find the principal argument of \((1 + i\sqrt{3})^2\).

Answer:

\( \dfrac{2\pi}{3} \)

Question. 34

Where does \(z\) lie if \( \left| \dfrac{z - 5i}{z + 5i} \right| = 1 \)?

Answer:

Real axis

Long Answer Questions

Question. 12

If |z + 1| = z + 2(1 + i), then find z.

Answer:

\(\dfrac{1}{2} - 2i\)

Question. 13

If arg(z − 1) = arg(z + 3i), then find x − 1 : y, where z = x + iy.

Answer:

1 : 3

Question. 14

Show that \(\left|\dfrac{z - 2}{z - 3}\right| = 2\) represents a circle. Find its centre and radius.

Answer:

Centre: \(\left(\dfrac{10}{3}, 0\right)\)

Radius: \(\dfrac{2}{3}\)

Question. 15

If \(\dfrac{z - 1}{z + 1}\) is a purely imaginary number (z ≠ −1), then find |z|.

Answer:

1

Question. 16

z₁ and z₂ are two complex numbers such that |z₁| = |z₂| and arg(z₁) + arg(z₂) = π, then show that z₁ = − z̄₂.

Question. 17

If |z₁| = 1 (z₁ ≠ −1) and z₂ = \(\dfrac{z₁ − 1}{z₁ + 1}\), show that the real part of z₂ is zero.

Question. 18

If z₁, z₂ and z₃, z₄ are two pairs of conjugate complex numbers, then find \(\arg\left(\dfrac{z₁}{z₄}\right) + \arg\left(\dfrac{z₂}{z₃}\right).\)

Answer:

0

Question. 19

If |z₁| = |z₂| = … = |zₙ| = 1, then show that

\[|z₁ + z₂ + ⋯ + zₙ| = \left|\dfrac{1}{z₁} + \dfrac{1}{z₂} + ⋯ + \dfrac{1}{zₙ}\right|.\]

Question. 20

For complex numbers z₁ and z₂, if arg(z₁) − arg(z₂) = 0, then show that |z₁ − z₂| = ||z₁| − |z₂||.

Question. 21

Solve the system of equations Re(z²) = 0, |z| = 2.

Answer:

\(\sqrt{2} + i\sqrt{2},\; \sqrt{2} - i\sqrt{2},\; -\sqrt{2} + i\sqrt{2},\; -\sqrt{2} - i\sqrt{2}\)

Question. 22

Find the complex number satisfying the equation z + √2 |z + 1| + i = 0.

Answer:

−2 − i

Question. 23

Write the complex number \(z = \dfrac{1 - i}{\cos \dfrac{\pi}{3} + i \sin \dfrac{\pi}{3}}\) in polar form.

Answer:

\(\sqrt{2}\left(\cos\dfrac{5\pi}{12} + i\sin\dfrac{5\pi}{12}\right)\)

Question. 24

If z and w are two complex numbers such that |zw| = 1 and arg(z) − arg(w) = \(\dfrac{\pi}{2}\), then show that \(\overline{z} w = −i\).

Fill in the Blanks

Question. 25(i)

(i) For any two complex numbers \(z_1, z_2\) and any real numbers \(a, b\), \(\; |az_1 - bz_2|^2 + |bz_1 + az_2|^2 = ____\).

Answer:

\((a^2 + b^2)\bigl(|z_1|^2 + |z_2|^2\bigr)\)

Question. 25(ii)

(ii) The value of \(\sqrt{-25} \times \sqrt{-9}\) is ____.

Answer:

-15

Question. 25(iii)

(iii) The number \(\dfrac{(1 - i)^3}{1 - i^3}\) is equal to ____.

Answer:

-2

Question. 25(iv)

(iv) The sum of the series \(i + i^2 + i^3 + \dots\) up to 100 terms is ____.

Answer:

0

Question. 25(v)

(v) The multiplicative inverse of \(1 + i\) is ____.

Answer:

\(\dfrac{1}{2} - \dfrac{i}{2}\)

Question. 25(vi)

(vi) If \(z_1\) and \(z_2\) are complex numbers such that \(z_1 + z_2\) is a real number, then \(z_2 = ____\).

Answer:

\(\overline{z_1}\)

Question. 25(vii)

(vii) \(\arg(z) + \arg(\overline{z})\) \((\overline{z} \ne 0)\) is ____.

Answer:

0

Question. 25(viii)

(viii) If \(|z + 4| \le 3\), then the greatest and least values of \(|z + 1|\) are ____ and ____ respectively.

Answer:

6 and 0

Question. 25(ix)

(ix) If \(\left|\dfrac{z - 2}{z + 2}\right| = \dfrac{\pi}{6}\), then the locus of \(z\) is ____.

Answer:

a circle

Question. 25(x)

(x) If \(|z| = 4\) and \(\arg(z) = \dfrac{5\pi}{6}\), then \(z = ____\).

Answer:

\(-2\sqrt{3} + 2i\)

Match the Following

Question. 27

Match the items in Column A with Column B using the table below.

Column AColumn B

(a) The polar form of \(i + \sqrt{3}\)

(i) Perpendicular bisector of segment joining \((-2,0)\) and \((2,0)\)

(b) The amplitude of \(-1 + \sqrt{3}\) is

(ii) On or outside the circle having centre at \((0,-4)\) and radius 3

(c) If \(|z + 2| = |z - 2|\), then locus of \(z\) is

(iii) \(\dfrac{2\pi}{3}\)

(d) If \(|z + 2i| = |z - 2i|\), then locus of \(z\) is

(iv) Perpendicular bisector of segment joining \((0,-2)\) and \((0,2)\)

(e) Region represented by \(|z + 4i| \ge 3\) is

(v) \(2\bigl(\cos\tfrac{\pi}{6} + i\sin\tfrac{\pi}{6}\bigr)\)

(f) Region represented by \(|z + 4| \le 3\) is

(vi) On or inside the circle having centre \((-4,0)\) and radius 3 units

(g) Conjugate of \(\dfrac{1 + 2i}{1 - i}\) lies in

(vii) First quadrant

(h) Reciprocal of \(1 - i\) lies in

(viii) Third quadrant

Answer:

Column AMatched Item from Column B

(a) The polar form of \(i + \sqrt{3}\)

(v) \(2\bigl(\cos\tfrac{\pi}{6} + i\sin\tfrac{\pi}{6}\bigr)\)

(b) The amplitude of \(-1 + \sqrt{3}\) is

(iii) \(\dfrac{2\pi}{3}\)

(c) If \(|z + 2| = |z - 2|\), then locus of \(z\) is

(i) Perpendicular bisector of segment joining \((-2,0)\) and \((2,0)\)

(d) If \(|z + 2i| = |z - 2i|\), then locus of \(z\) is

(iv) Perpendicular bisector of segment joining \((0,-2)\) and \((0,2)\)

(e) Region represented by \(|z + 4i| \ge 3\) is

(ii) On or outside the circle having centre at \((0,-4)\) and radius 3

(f) Region represented by \(|z + 4| \le 3\) is

(vi) On or inside the circle having centre \((-4,0)\) and radius 3 units

(g) Conjugate of \(\dfrac{1 + 2i}{1 - i}\) lies in

(viii) Third quadrant

(h) Reciprocal of \(1 - i\) lies in

(vii) First quadrant

Multiple Choice Questions

Choose the correct answer from the given four options indicated against each of the Exercises from 35 to 50 (M.C.Q)

Question.  35

\(\sin x + i\cos 2x\) and \(\cos x - i\sin 2x\) are conjugate to each other for:

(a)

\(x = n\pi\)

(b)

\(x = \left(n+\tfrac{1}{2}\right)\tfrac{\pi}{2}\)

(c)

\(x = 0\)

(d)

No value of \(x\)

Question.  36

The real value of \(\alpha\) for which the expression \(\dfrac{1 - i\sin\alpha}{1 + 2i\sin\alpha}\) is purely real is:

(a)

\((n+1)\dfrac{\pi}{2}\)

(b)

\((2n+1)\dfrac{\pi}{2}\)

(c)

\(n\pi\)

(d)

None of these

Question.  37

If \(z = x + iy\) lies in the third quadrant, then \(\overline{z}/z\) also lies in the third quadrant if

(a)

\(x > y > 0\)

(b)

\(x < y < 0\)

(c)

\(y < x < 0\)

(d)

\(y > x > 0\)

Question.  38

The value of \((z + 3)(\overline{z} + 3)\) is equivalent to

(a)

\(|z + 3|^2\)

(b)

\(|z - 3|\)

(c)

\(z^2 + 3\)

(d)

None of these

Question.  39

If \(\left(\dfrac{1+i}{1-i}\right)^x = 1\), then

(a)

\(x = 2n + 1\)

(b)

\(x = 4n\)

(c)

\(x = 2n\)

(d)

\(x = 4n + 1\)

Question.  40

A real value of \(x\) satisfies the equation \(\dfrac{3 - 4ix}{3 + 4ix} = \alpha - i\beta\) (\(\alpha,\beta\in\mathbb{R}\)) if \(\alpha^2 + \beta^2 =\)

(a)

1

(b)

-1

(c)

2

(d)

-2

Question.  41

Which of the following is correct for any two complex numbers \(z_1\) and \(z_2\)?

(a)

\(|z_1 z_2| = |z_1||z_2|\)

(b)

\(\arg(z_1 z_2) = \arg(z_1) \cdot \arg(z_2)\)

(c)

\(|z_1 + z_2| = |z_1| + |z_2|\)

(d)

\(|z_1 + z_2| \ge |\,|z_1| - |z_2|\,|\)

Question.  42

The point represented by the complex number \(2 - i\) is rotated about origin through an angle \(\dfrac{\pi}{2}\) in the clockwise direction; the new position of point is:

(a)

\(1 + 2i\)

(b)

\(-1 - 2i\)

(c)

\(2 + i\)

(d)

\(-1 + 2i\)

Question.  43

Let \(x,y \in \mathbb{R}\). Then \(x + iy\) is a non-real complex number if:

(a)

\(x = 0\)

(b)

\(y = 0\)

(c)

\(x \ne 0\)

(d)

\(y \ne 0\)

Question.  44

If \(a + ib = c + id\), then

(a)

\(a^2 + c^2 = 0\)

(b)

\(b^2 + c^2 = 0\)

(c)

\(b^2 + d^2 = 0\)

(d)

\(a^2 + b^2 = c^2 + d^2\)

Question.  45

The complex number \(z\) which satisfies the condition \(\left|\dfrac{i + z}{i - z}\right| = 1\) lies on

(a)

circle \(x^2 + y^2 = 1\)

(b)

the x-axis

(c)

the y-axis

(d)

the line \(x + y = 1\)

Question.  46

If \(z\) is a complex number, then

(a)

\(|z^2| > |z|^2\)

(b)

\(|z^2| = |z|^2\)

(c)

\(|z^2| < |z|^2\)

(d)

\(|z^2| \ge |z|^2\)

Question.  47

\(|z_1 + z_2| = |z_1| + |z_2|\) is possible if

(a)

\(z_2 = \overline{z_1}\)

(b)

\(z_2 = \dfrac{1}{z_1}\)

(c)

\(\arg(z_1) = \arg(z_2)\)

(d)

\(|z_1| = |z_2|\)

Question.  48

The real value of \(\theta\) for which the expression \(\dfrac{1 + i\cos\theta}{1 - 2i\cos\theta}\) is a real number is:

(a)

\(n\pi + \dfrac{\pi}{4}\)

(b)

\(n\pi + (-1)^n\dfrac{\pi}{4}\)

(c)

\(2n\pi \pm \dfrac{\pi}{2}\)

(d)

none of these

Question.  49

The value of \(\arg(x)\) when \(x < 0\) is:

(a)

0

(b)

\(\dfrac{\pi}{2}\)

(c)

\(\pi\)

(d)

none of these

Question.  50

If \(f(z) = \dfrac{7 - z}{1 - \overline{z}}\), where \(z = 1 + 2i\), then \(|f(z)|\) is

(a)

\(\dfrac{|z|}{2}\)

(b)

\(|z|\)

(c)

\(2|z|\)

(d)

none of these

NCERT Exemplar Solutions Class 11 – Mathematics – Chapter 5: COMPLEX NUMBERS AND QUADRATIC EQUATIONS | Detailed Answers