NCERT Exemplar Solutions
Class 11 - Mathematics - Chapter 3: TRIGONOMETRIC FUNCTIONS
Long Answer Type

Question. 20

If \(\sin(\theta + \alpha) = a\) and \(\sin(\theta + \beta) = b\), then prove that \(\cos 2(\alpha - \beta) - 4ab \cos(\alpha - \beta) = 1 - 2a^2 - 2b^2\).

Question. 21

If \(\cos(\theta + \phi) = m \cos(\theta - \phi)\), then prove that \(\tan \theta = \dfrac{1 - m}{1 + m} \cot \phi\).

Question. 22

Find the value of the expression

\(3\left[\sin^4\left(\dfrac{3\pi}{2} - \alpha\right) + \sin^4(3\pi + \alpha)\right] - 2\left[\sin^6\left(\dfrac{\pi}{2} + \alpha\right) + \sin^6(5\pi - \alpha)\right].\)

Answer:

1

Question. 23

If an equation \(a \cos 2\theta + b \sin 2\theta = c\) has \(\alpha\) and \(\beta\) as its roots, then prove that

\(\tan \alpha + \tan \beta = \dfrac{2b}{a + c}.\)

Question. 24

If \(x = \sec \phi - \tan \phi\) and \(y = \csc \phi + \cot \phi\), then show that \(xy + x - y + 1 = 0\).

Question. 25

If \(\theta\) lies in the first quadrant and \(\cos \theta = \dfrac{8}{17}\), then find the value of

\(\cos(30^{\circ} + \theta) + \cos(45^{\circ} - \theta) + \cos(120^{\circ} - \theta).\)

Answer:

\(\dfrac{23}{17}\left(\dfrac{\sqrt{3} - 1}{2} + \dfrac{1}{\sqrt{2}}\right)\)

Question. 26

Find the value of the expression

\(\cos^4\dfrac{\pi}{8} + \cos^4\dfrac{3\pi}{8} + \cos^4\dfrac{5\pi}{8} + \cos^4\dfrac{7\pi}{8}.\)

Answer:

\(\dfrac{3}{2}\)

Question. 27

Find the general solution of the equation \(5\cos^2\theta + 7\sin^2\theta - 6 = 0\).

Answer:

\(n\pi \pm \dfrac{\pi}{4}\)

Question. 28

Find the general solution of the equation

\(\sin x - 3 \sin 2x + \sin 3x = \cos x - 3 \cos 2x + \cos 3x.\)

Answer:

\(\dfrac{n\pi}{2} \pm \dfrac{\pi}{8}\)

Question. 29

Find the general solution of the equation

\((\sqrt{3} - 1)\cos \theta + (\sqrt{3} + 1)\sin \theta = 2.\)

Answer:

\(\theta = 2n\pi \pm \dfrac{\pi}{4} + \dfrac{\pi}{12}\)

NCERT Exemplar Solutions Class 11 – Mathematics – Chapter 3: TRIGONOMETRIC FUNCTIONS – Long Answer Type | Detailed Answers