NCERT Exemplar Solutions
Class 11 - Mathematics - Chapter 9: SEQUENCE AND SERIES
Match the Following

Question. 35

Match the questions given under Column I with their appropriate answers given under the Column II.

Column IColumn II

(a) 4, 1, \(\tfrac{1}{4}\), \(\tfrac{1}{16}\)

(i) A.P.

(b) 2, 3, 5, 7

(ii) sequence

(c) 13, 8, 3, -2, -7

(iii) G.P.

Answer:

Column AMatched Item from Column B

4, 1, \(\tfrac{1}{4}\), \(\tfrac{1}{16}\)

G.P.

2, 3, 5, 7

sequence

13, 8, 3, -2, -7

A.P.

Question. 36

Match the questions given under Column I with their appropriate answers given under the Column II.

Column IColumn II

(a) \(1^2 + 2^2 + 3^2 + \ldots + n^2\)

(i) \(\left(\dfrac{n(n+1)}{2}\right)^2\)

(b) \(1^3 + 2^3 + 3^3 + \ldots + n^3\)

(ii) \(n(n+1)\)

(c) \(2 + 4 + 6 + \ldots + 2n\)

(iii) \(\dfrac{n(n+1)(2n+1)}{6}\)

(d) \(1 + 2 + 3 + \ldots + n\)

(iv) \(\dfrac{n(n+1)}{2}\)

Answer:

Column AMatched Item from Column B

\(1^2 + 2^2 + \ldots + n^2\)

\(\dfrac{n(n+1)(2n+1)}{6}\)

\(1^3 + 2^3 + \ldots + n^3\)

\(\left(\dfrac{n(n+1)}{2}\right)^2\)

\(2 + 4 + 6 + \ldots + 2n\)

\(n(n+1)\)

\(1 + 2 + 3 + \ldots + n\)

\(\dfrac{n(n+1)}{2}\)

NCERT Exemplar Solutions Class 11 – Mathematics – Chapter 9: SEQUENCE AND SERIES – Match the Following | Detailed Answers