Expand \((1 - 2x)^5\).
\(1 - 10x + 40x^2 - 80x^3 + 80x^4 - 32x^5\)
Expand \(\left( \dfrac{2}{x} - \dfrac{x}{2} \right)^5\).
\(\dfrac{32}{x^5} - \dfrac{40}{x^3} + \dfrac{20}{x} - 5x + \dfrac{5}{8}x^3 - \dfrac{x^5}{32}\)
Expand \((2x - 3)^6\).
\(64x^6 - 576x^5 + 2160x^4 - 4320x^3 + 4860x^2 - 2916x + 729\)
Expand \(\left( \dfrac{x}{3} + \dfrac{1}{x} \right)^5\).
\(\dfrac{x^5}{243} + \dfrac{5x^3}{81} + \dfrac{10x}{27} + \dfrac{10}{9x} + \dfrac{5}{3x^3} + \dfrac{1}{x^5}\)
Expand \(\left( x + \dfrac{1}{x} \right)^6\).
\(x^6 + 6x^4 + 15x^2 + 20 + \dfrac{15}{x^2} + \dfrac{6}{x^4} + \dfrac{1}{x^6}\)
Using Binomial Theorem, evaluate \(96^3\).
884736
Using Binomial Theorem, evaluate \(102^5\).
11040808032
Using Binomial Theorem, evaluate \(101^4\).
104060401
Using Binomial Theorem, evaluate \(99^5\).
9509900499
Using Binomial Theorem, indicate which number is larger: \((1.1)^{10000}\) or 1000.
\((1.1)^{10000} > 1000\)
Find \((a + b)^4 - (a - b)^4\). Hence, evaluate \((\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4\).
\(8(a^3b + ab^3);\ 40\sqrt{6}\)
Find \((x + 1)^6 + (x - 1)^6\). Hence evaluate \((\sqrt{2} + 1)^6 + (\sqrt{2} - 1)^6\).
\(2(x^6 + 15x^4 + 15x^2 + 1),\ 198\)
Show that \(9^{n+1} - 8n - 9\) is divisible by 64 whenever \(n\) is a positive integer.
40\sqrt{6}
Prove that \(\sum_{r=0}^{n} 3^r \binom{n}{r} = 4^n\).
Answer not provided in the screenshot.