NCERT Exemplar Solutions
Class 6 - Mathematics - Unit 1: Number System - Problems and Solutions
Question 179

Question. 179

Estimate each of the following products by rounding off each number to nearest tens:

(a) 87 × 32

(b) 311 × 113

(c) 3239 × 28

(d) 1385 × 789

Answer:

(a) 90 × 30 = 2700

(b) 310 × 110 = 34100

(c) 3240 × 30 = 97200

(d) 1390 × 790 = 1098100

Detailed Answer with Explanation:

Goal: estimate by rounding each number to the nearest 10, then multiply.

Rounding rule: Ones digit 0–4 → round down. Ones digit 5–9 → round up.

  • (a) 87 × 32

    Round:

    \(87 \approx 90\)

    \(32 \approx 30\)

    Multiply:

    \(90 \times 30 = 9 \times 3 \times 100 = 27 \times 100 = 2700\)

  • (b) 311 × 113

    Round:

    \(311 \approx 310\)

    \(113 \approx 110\)

    Multiply:

    \(310 \times 110 = 31 \times 11 \times 100\)

    \(31 \times 11 = 341\)

    So, \(341 \times 100 = 34100\)

  • (c) 3239 × 28

    Round:

    \(3239 \approx 3240\)

    \(28 \approx 30\)

    Multiply:

    \(3240 \times 30 = 324 \times 3 \times 100\)

    \(324 \times 3 = 972\)

    So, \(972 \times 100 = 97200\)

  • (d) 1385 × 789

    Round:

    \(1385 \approx 1390\)

    \(789 \approx 790\)

    Multiply:

    \(1390 \times 790 = (139 \times 79) \times 100\)

    \(139 \times 79 = 139 \times (80 - 1)\)

    \(= 139 \times 80 - 139 \times 1\)

    \(= 11120 - 139 = 10981\)

    So, \(10981 \times 100 = 1098100\)

Note: These are estimates, so answers are close to the exact products.

NCERT Exemplar Solutions Class 6 – Mathematics – Unit 1: Number System – Problems and Solutions | Detailed Answers