If \( f(x) = \dfrac{\tan x}{x - \pi} \), then \( \lim_{x \to \pi} f(x) = \_\_\_\_\_\_\_\_\_\_ \)
1
\( \lim_{x \to 0} \left( \sin(mx) \cot \dfrac{x}{\sqrt{3}} \right) = 2 \), then \( m = \_\_\_\_\_\_\_\_ \)
\( \dfrac{2\sqrt{3}}{3} \)
If \( y = 1 + \dfrac{x}{1!} + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + \ldots \), then \( \dfrac{dy}{dx} = \_\_\_\_\_\_\_\_ \)
y
\( \lim_{x \to 3^{+}} \dfrac{x}{[x]} = \_\_\_\_\_\_\_ \)
1