NCERT Exemplar Solutions
Class 11 - Mathematics - Chapter 13: LIMITS AND DERIVATIVES
Objective Type Question

Choose the correct answer from the given four options:

Question.  54

\(\lim_{x\to\pi} \dfrac{\sin x}{x-\pi}\) is

(A)

1

(B)

2

(C)

-1

(D)

-2

Question.  55

\(\lim_{x\to 0} \dfrac{x^{2}\cos x}{1-\cos x}\) is

(A)

2

(B)

\(\tfrac{3}{2}\)

(C)

\(-\tfrac{3}{2}\)

(D)

1

Question.  56

\(\lim_{x\to 0} \dfrac{(1+x)^{n}-1}{x}\) is

(A)

\(n\)

(B)

1

(C)

\(-n\)

(D)

0

Question.  57

\(\lim_{x\to 1} \dfrac{x^{m}-1}{x^{n}-1}\) is

(A)

1

(B)

\(\dfrac{m}{n}\)

(C)

\(-\dfrac{m}{n}\)

(D)

\(\dfrac{m^{2}}{n^{2}}\)

Question.  58

\(\lim_{\theta\to 0} \dfrac{1-\cos 4\theta}{1-\cos 6\theta}\) is

(A)

\(\dfrac{4}{9}\)

(B)

\(\dfrac{1}{2}\)

(C)

\(-\dfrac{1}{2}\)

(D)

-1

Question.  59

\(\lim_{x\to 0} \dfrac{\csc x - \cot x}{x}\) is

(A)

\(-\tfrac{1}{2}\)

(B)

1

(C)

\(\tfrac{1}{2}\)

(D)

1

Question.  60

\(\lim_{x\to 0} \dfrac{\sin x}{\sqrt{x+1}-\sqrt{1-x}}\) is

(A)

2

(B)

0

(C)

1

(D)

-1

Question.  61

\(\lim_{x\to \dfrac{\pi}{4}} \dfrac{\sec^{2}x -2}{\tan x -1}\) is

(A)

3

(B)

1

(C)

0

(D)

\(\sqrt{2}\)

Question.  62

\(\lim_{x\to 1} \dfrac{(\sqrt{x}-1)(2x-3)}{2x^{2}+x-3}\) is

(A)

\(\dfrac{1}{10}\)

(B)

\(-\dfrac{1}{10}\)

(C)

1

(D)

None of these

Question.  63

Let \(f(x)=\begin{cases}\dfrac{\sin[ x ]}{[ x ]},&[ x ]\ne 0\\0,&[ x ]=0\end{cases}\) where \([\cdot]\) denotes the greatest integer function. Then \(\lim_{x\to 0} f(x)\) is

(A)

1

(B)

0

(C)

-1

(D)

None of these

Question.  64

\(\lim_{x\to 0} \dfrac{|\sin x|}{x}\) is

(A)

1

(B)

-1

(C)

does not exist

(D)

None of these

Question.  65

Let \(f(x)=\begin{cases}x^{2}-1,&0

(A)

\(x^{2}-6x+9=0\)

(B)

\(x^{2}-7x+8=0\)

(C)

\(x^{2}-14x+49=0\)

(D)

\(x^{2}-10x+21=0\)

Question.  66

\(\lim_{x\to 0} \dfrac{\tan 2x - x}{3x - \sin x}\)

(A)

2

(B)

\(\dfrac{1}{2}\)

(C)

\(-\dfrac{1}{2}\)

(D)

\(\dfrac{1}{4}\)

Question.  67

Let \(f(x)=x-[x]\), \(x\in\mathbb{R}\). Then \(f'(\tfrac{1}{2})\) is

(A)

\(\dfrac{3}{2}\)

(B)

1

(C)

0

(D)

-1

Question.  68

If \(y=\sqrt{x}+\dfrac{1}{\sqrt{x}}\), then \(\dfrac{dy}{dx}\) at \(x=1\) is

(A)

1

(B)

\(\dfrac{1}{2}\)

(C)

\(\dfrac{1}{\sqrt{2}}\)

(D)

0

Question.  69

If \(f(x)=\dfrac{x-4}{2\sqrt{x}}\), then \(f'(1)\) is

(A)

\(\dfrac{5}{4}\)

(B)

\(\dfrac{4}{5}\)

(C)

1

(D)

0

Question.  70

If \(y=\dfrac{1+\dfrac{1}{x^{2}}}{1-\dfrac{1}{x^{2}}}\), then \(\dfrac{dy}{dx}\) is

(A)

\(-\dfrac{4x}{(x^{2}-1)^{2}}\)

(B)

\(-\dfrac{4x}{x^{2}-1}\)

(C)

\(\dfrac{1-x^{2}}{4x}\)

(D)

\(\dfrac{4x}{x^{2}-1}\)

Question.  71

If \(y=\dfrac{\sin x+\cos x}{\sin x-\cos x}\), then \(\dfrac{dy}{dx}\) at \(x=0\) is

(A)

-2

(B)

0

(C)

\(\dfrac{1}{2}\)

(D)

does not exist

Question.  72

If \(y=\dfrac{\sin(x+9)}{\cos x}\), then \(\dfrac{dy}{dx}\) at \(x=0\) is

(A)

\(\cos 9\)

(B)

\(\sin 9\)

(C)

0

(D)

1

Question.  73

If \(f(x)=1+x+\dfrac{x^{2}}{2}+\dots+\dfrac{x^{100}}{100}\), then \(f'(1)\) is equal to

(A)

\(\dfrac{1}{100}\)

(B)

100

(C)

does not exist

(D)

0

Question.  74

If \(f(x)=\dfrac{x^{n}-a^{n}}{x-a}\) for some constant \(a\), then \(f'(a)\) is

(A)

1

(B)

0

(C)

does not exist

(D)

\(\dfrac{1}{2}\)

Question.  75

If \(f(x)=x^{100}+x^{99}+\dots+x+1\), then \(f'(1)\) is equal to

(A)

5050

(B)

5049

(C)

5051

(D)

50051

Question.  76

If \(f(x)=1-x+x^{2}-x^{3}+\dots+ x^{100}\), then \(f'(1)\) is equal to

(A)

150

(B)

-50

(C)

-150

(D)

50

NCERT Exemplar Solutions Class 11 – Mathematics – Chapter 13: LIMITS AND DERIVATIVES – Objective Type Question | Detailed Answers