NCERT Exemplar Solutions
Class 12 - Mathematics - Chapter 2: INVERSE TRIGONOMETRIC FUNCTIONS
Long Answer Questions

Question. 12

Prove that \(\tan^{-1}\left(\dfrac{\sqrt{1+x^{2}} + \sqrt{1-x^{2}}}{\sqrt{1+x^{2}} - \sqrt{1-x^{2}}}\right) = \dfrac{\pi}{4} + \dfrac{1}{2} \cos^{-1} x^{2}\).

Question. 13

Find the simplified form of \(\cos^{-1}\left(\dfrac{3}{5}\cos x + \dfrac{4}{5}\sin x\right)\), where \(x \in \left[ -\dfrac{3\pi}{4}, \dfrac{\pi}{4} \right]\).

Answer:

\(\tan^{-1}\dfrac{4}{3} - x\)

Question. 14

Prove that \(\sin^{-1}\dfrac{8}{17} + \sin^{-1}\dfrac{3}{5} = \sin^{-1}\dfrac{77}{85}\).

Answer:

\(\dfrac{77}{85}\)

Question. 15

Show that \(\sin^{-1}\dfrac{5}{13} + \cos^{-1}\dfrac{3}{5} = \tan^{-1}\dfrac{63}{16}\).

Answer:

\(\dfrac{63}{16}\)

Question. 16

Prove that \(\tan^{-1}\dfrac{1}{4} + \tan^{-1}\dfrac{2}{9} = \sin^{-1}\dfrac{1}{\sqrt{5}}\).

Answer:

\(\dfrac{1}{\sqrt{5}}\)

Question. 17

Find the value of \(4 \tan^{-1}\dfrac{1}{5} - \tan^{-1}\dfrac{1}{239}\).

Answer:

\(\dfrac{\pi}{4}\)

Question. 18

Show that \(\tan\left(\dfrac{1}{2}\sin^{-1}\dfrac{3}{4}\right) = \dfrac{4 - \sqrt{7}}{3}\) and justify why the other value \(\dfrac{4 + \sqrt{7}}{3}\) is ignored.

Answer:

\(\dfrac{4 - \sqrt{7}}{3}\)

Question. 19

If \(a_{1}, a_{2}, a_{3}, \ldots, a_{n}\) is an arithmetic progression with common difference \(d\), evaluate the expression:

\[ \tan \left[ \tan^{-1}\left(\dfrac{d}{1 + a_{1}a_{2}}\right) + \tan^{-1}\left(\dfrac{d}{1 + a_{2}a_{3}}\right) + \tan^{-1}\left(\dfrac{d}{1 + a_{3}a_{4}}\right) + \cdots + \tan^{-1}\left(\dfrac{d}{1 + a_{n-1}a_{n}}\right) \right] \]

Answer:

\(\dfrac{a_{n} - a_{1}}{1 + a_{1}a_{n}}\)

NCERT Exemplar Solutions Class 12 – Mathematics – Chapter 2: INVERSE TRIGONOMETRIC FUNCTIONS – Long Answer Questions | Detailed Answers