NCERT Exemplar Solutions
Class 12 - Mathematics
Chapter 3: Matrices

Order of a Matrix, Types of Matrices, Additon of Matrices, Multiplication of Matrix by a Scalar, Negative of a Matrix, Multiplication of Matrices, Transpose of a Matrix, Symmetric Matrix and Skew Symmetric Matrix, Invertible Matrices, Inverse of a Matrix using Elementary Row or Column Operations.

Short Answer (S.A.)

Question. 1

If a matrix has 28 elements, what are the possible orders it can have? What if it has 13 elements?

Answer:

28 × 1, 1 × 28, 4 × 7, 7 × 4, 14 × 2, 2 × 14. If matrix has 13 elements then its order will be either 13 × 1 or 1 × 13.

Question. 2

In the matrix

\( A = \begin{bmatrix} a & 1 & x \\ 2 & \sqrt{3} & x^2 - y \\ 0 & 5 & -\dfrac{2}{5} \end{bmatrix} \), write:

(i) the order of the matrix A, (ii) the number of elements, (iii) the elements \( a_{23}, a_{31}, a_{12} \).

Answer:

(i) 3 × 3

(ii) 9

(iii) \( a_{23} = x^2 - y,\ a_{31} = 0,\ a_{12} = 1 \)

Question. 3

Construct a 2 × 2 matrix where (i) \( a_{ij} = \dfrac{(i - 2j)^2}{2} \) and (ii) \( a_{ij} = | -2i + 3j | \).

Answer:

(i) \( \begin{bmatrix} 1 & \dfrac{9}{2} \\ 0 & 2 \end{bmatrix} \)

(ii) \( \begin{bmatrix} 1 & 4 \\ -1 & 2 \end{bmatrix} \)

Question. 4

Construct a 3 × 2 matrix whose elements are given by \( a_{ij} = e^{ix} \sin(jx) \).

Answer:

\( \begin{bmatrix} e^x\sin x & e^x\sin 2x \\ e^{2x}\sin x & e^{2x}\sin 2x \\ e^{3x}\sin x & e^{3x}\sin 2x \end{bmatrix} \)

Question. 5

Find the values of \( a \) and \( b \) if matrices A and B are equal.

Answer:

\( a = 2,\ b = 2 \)

Question. 6

If possible, find the sum of the matrices A and B.

Answer:

Not possible

Question. 7

If \( X = \begin{bmatrix} 3 & 1 & -1 \\ 5 & -2 & -3 \end{bmatrix} \) and \( Y = \begin{bmatrix} 2 & 1 & -1 \\ 7 & 2 & 4 \end{bmatrix} \), find (i) \( X + Y \), (ii) \( 2X - 3Y \), (iii) a matrix \( Z \) such that \( X + Y + Z = 0 \).

Answer:

(i) \( \begin{bmatrix} 5 & 2 & -2 \\ 12 & 0 & 1 \end{bmatrix} \)

(ii) \( \begin{bmatrix} 0 & -1 & 1 \\ -11 & -10 & -18 \end{bmatrix} \)

(iii) \( Z = \begin{bmatrix} -5 & -2 & 2 \\ -12 & 0 & -1 \end{bmatrix} \)

Question. 8

Find the non-zero value of \( x \) satisfying the matrix equation.

Answer:

\( x = 4 \)

Question. 9

Show that \( (A + B)(A - B) \neq A^2 - B^2 \).

Answer:

Question. 10

Find the value of \( x \) if

\( \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix} = O \).

Answer:

\( -2, -14 \)

Question. 11

Show that \( A = \begin{bmatrix} 5 & 3 \\ -1 & -2 \end{bmatrix} \) satisfies the equation \( A^2 - 3A - 7I = O \) and hence find \( A^{-1} \).

Answer:

\( A^{-1} = -\dfrac{1}{7} \begin{bmatrix} -2 & -3 \\ 1 & 5 \end{bmatrix} \)

Question. 12

Find the matrix \( A \) satisfying the matrix equation:

\( \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} A \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \).

Answer:

\( A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \)

Question. 13

Find \( A \) if

\( \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} A = \begin{bmatrix} -4 & 8 & 4 \\ -1 & 2 & 1 \\ -3 & 6 & 3 \end{bmatrix} \).

Answer:

\( A = [-1\ 2\ 1] \)

Question. 14

If \( A = \begin{bmatrix} 3 & -4 \\ 1 & 1 \\ 2 & 0 \end{bmatrix} \) and \( B = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix} \), verify that \( (BA)' \neq B'A^2 \).

Answer:

Question. 15

If possible, find \( BA \) and \( AB \), where

\( A = \begin{bmatrix} 2 & 1 & 2 \\ 1 & 2 & 4 \end{bmatrix},\ B = \begin{bmatrix} 4 \\ 2 \\ 1 \end{bmatrix} \).

Answer:

\( AB = \begin{bmatrix} 12 & 9 \\ 12 & 15 \end{bmatrix},\ BA = \begin{bmatrix} 9 & 6 & 12 \\ 7 & 8 & 16 \\ 4 & 5 & 10 \end{bmatrix} \)

Question. 16

Show by an example that for \( A \neq O \), \( B \neq O \), \( AB = O \).

Answer:

Question. 17

Given \( A = \begin{bmatrix} 2 & 4 & 0 \\ 3 & 9 & 6 \end{bmatrix} \) and \( B = \begin{bmatrix} 1 & 4 \\ 2 & 8 \\ 1 & 3 \end{bmatrix} \), is \( (AB)' = B'A' \)?

Answer:

Question. 18

Solve for \( x \) and \( y \):

\( x \begin{bmatrix} 2 \\ 1 \end{bmatrix} + y \begin{bmatrix} 3 \\ 5 \end{bmatrix} + \begin{bmatrix} -8 \\ -11 \end{bmatrix} = O \).

Answer:

\( x = 1,\ y = 2 \)

Question. 19

If \( X \) and \( Y \) are \( 2 \times 2 \) matrices, solve the matrix equations:

\( 2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix},\ 3X + 2Y = \begin{bmatrix} -2 & 2 \\ 1 & -5 \end{bmatrix} \).

Answer:

\( X = \begin{bmatrix} -2 & 0 \\ -1 & -3 \end{bmatrix},\ Y = \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix} \)

Question. 20

If \( A = [3\ 5] \) and \( B = [7\ 3] \), then find a non-zero matrix \( C \) such that \( AC = BC \).

Answer:

\( \begin{bmatrix} k & k \\ 2k & 2k \end{bmatrix} \), where \( k \) is a real number

Question. 21

Give an example of matrices \( A, B, C \) such that \( AB = AC \), where \( A \) is non-zero, but \( B \neq C \).

Answer:

Question. 22

If \( A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, B = \begin{bmatrix} 2 & 3 \\ 3 & -4 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} \), verify (i) \( (AB)C = A(BC) \), (ii) \( A(B + C) = AB + AC \).

Answer:

Question. 23

If \( P = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} \) and \( Q = \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \), prove that \( PQ = QP \).

Answer:

Question. 24

If \( \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = A \), find \( A \).

Answer:

\( A = [-4] \)

Question. 25

If \( A = \begin{bmatrix} 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 5 & 3 & 4 \\ 8 & 7 & 6 \end{bmatrix}, C = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix} \), verify that \( A(B + C) = AB + AC \).

Answer:

Question. 26

If \( A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 3 \\ 0 & 1 & 1 \end{bmatrix} \), then verify that \( A^2 + A = A(A + I) \), where \( I \) is the \( 3 \times 3 \) unit matrix.

Answer:

Question. 27

If \( A = \begin{bmatrix} 0 & -1 & 2 \\ 4 & 3 & -4 \end{bmatrix} \) and \( B = \begin{bmatrix} 4 & 0 \\ 1 & 3 \\ 2 & 6 \end{bmatrix} \), verify that:

(i) \( (A')' = A \)

(ii) \( (AB)' = B'A' \)

(iii) \( (kA)' = (kA') \)

Answer:

Question. 28

If \( A = \begin{bmatrix} 1 & 2 \\ 4 & 1 \\ 5 & 6 \end{bmatrix} \) and \( B = \begin{bmatrix} 1 & 2 \\ 6 & 4 \\ 7 & 3 \end{bmatrix} \), then verify that:

(i) \( (2A + B)' = 2A' + B' \)

(ii) \( (A - B)' = A' - B' \)

Answer:

Question. 29

Show that \( A'A \) and \( AA' \) are both symmetric matrices for any matrix \( A \).

Answer:

Question. 30

Let \( A \) and \( B \) be square matrices of order \( 3 \times 3 \). Is \( (AB)' = A'B' \)? Give reasons.

Answer:

True when \( AB = BA \)

Question. 31

Show that if \( A \) and \( B \) are square matrices such that \( AB = BA \), then \( (A + B)^2 = A^2 + 2AB + B^2 \).

Answer:

Question. 32

Let \( A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \), \( B = \begin{bmatrix} 4 & 0 \\ 1 & 5 \end{bmatrix} \), \( C = \begin{bmatrix} 2 & 0 \\ 1 & -2 \end{bmatrix} \) and \( a = 4, b = -2 \). Show that:

(a) \( A + (B + C) = (A + B) + C \)

(b) \( A(BC) = (AB)C \)

(c) \( (a + b)B = aB + bB \)

(d) \( a(C - A) = aC - aA \)

(e) \( (A')' = A \)

(f) \( (bA)' = bA' \)

(g) \( (AB)' = B'A' \)

(h) \( (A - B)C = AC - BC \)

(i) \( (A - B)' = A' - B' \)

Answer:

Question. 33

If \( A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \), then show that \( A^2 = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix} \).

Answer:

Question. 34

If \( A = \begin{bmatrix} 0 & -x \\ x & 0 \end{bmatrix} \), \( B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \) and \( x^2 = -1 \), then show that \( (A + B)^2 = A^2 + B^2 \).

Answer:

Question. 35

Verify that \( A^2 = I \) when \( A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} \).

Answer:

Question. 36

Prove by Mathematical Induction that \( (A^n)' = (A')^n \), where \( n \in \mathbb{N} \) for any square matrix \( A \).

Answer:

Question. 37

Find inverse, by elementary row operations (if possible), of the following matrices:

(i) \( \begin{bmatrix} 1 & 3 \\ -5 & 7 \end{bmatrix} \)

(ii) \( \begin{bmatrix} 1 & -3 \\ -2 & 6 \end{bmatrix} \)

Answer:

(i) \( \dfrac{1}{22} \begin{bmatrix} 7 & -3 \\ 5 & 1 \end{bmatrix} \)

(ii) not possible

Question. 38

If \( \begin{bmatrix} xy & 4 \\ z + 6 & x + y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix} \), find values of \( x, y, z, w \).

Answer:

\( x = 2, y = 4 \) or \( x = 4, y = 2, z = -6, w = 4 \)

Question. 39

If \( A = \begin{bmatrix} 1 & 5 \\ 7 & 12 \end{bmatrix} \) and \( B = \begin{bmatrix} 9 & 1 \\ 7 & 8 \end{bmatrix} \), find a matrix \( C \) such that \( 3A + 5B + 2C \) is a null matrix.

Answer:

\( \begin{bmatrix} -24 & -10 \\ -28 & -38 \end{bmatrix} \)

Question. 40

If \( A = \begin{bmatrix} 3 & -5 \\ -4 & 2 \end{bmatrix} \), then find \( A^2 - 5A - 14I \). Hence, obtain \( A^3 \).

Answer:

\( A^3 = \begin{bmatrix} 187 & -195 \\ -156 & 148 \end{bmatrix} \)

Question. 41

Find the values of \( a, b, c, d \) if

\( 3 \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & 6 \\ -1 & 2d \end{bmatrix} + \begin{bmatrix} 4 & a + b \\ c + d & 3 \end{bmatrix} \).

Answer:

\( a = 2,\ b = 4,\ c = 1,\ d = 3 \)

Question. 42

Find the matrix \( A \) such that

\( \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ -3 & 4 \end{bmatrix} A = \begin{bmatrix} -1 & -8 & -10 \\ 1 & -2 & -5 \\ 9 & 22 & 15 \end{bmatrix} \).

Answer:

\( \begin{bmatrix} 1 & -2 & -5 \\ 3 & 4 & 0 \end{bmatrix} \)

Question. 43

If \( A = \begin{bmatrix} 1 & 2 \\ 4 & 1 \end{bmatrix} \), find \( A^2 + 2A + 7I \).

Answer:

\( \begin{bmatrix} 18 & 8 \\ 16 & 18 \end{bmatrix} \)

Question. 44

If \( A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \) and \( A^{-1} = A' \), find value of \( \alpha \).

Answer:

True for all real values of \( \alpha \)

Question. 45

If the matrix \( \begin{bmatrix} 0 & a & 3 \\ 2 & b & -1 \\ c & 1 & 0 \end{bmatrix} \) is a skew-symmetric matrix, find the values of \( a, b, c \).

Answer:

\( a = -2,\ b = 0,\ c = -3 \)

Question. 46

If \( P(x) = \begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix} \), then show that

\( P(x) P(y) = P(x + y) = P(y) P(x) \).

Answer:

Question. 47

If \( A \) is a square matrix such that \( A^2 = A \), show that \( (I + A)^3 = 7A + I \).

Answer:

Question. 48

If \( A, B \) are square matrices of same order and \( B \) is skew-symmetric, show that \( A' B A \) is skew-symmetric.

Answer:

Long Answer Questions

Question. 49

If \( AB = BA \) for any two square matrices, prove by mathematical induction that \( (AB)^n = A^n B^n \).

Answer:

Let \( A \) and \( B \) be square matrices of the same order such that \( AB = BA \). We prove by mathematical induction on positive integer \( n \) that \( (AB)^n = A^n B^n \).

Base case (n = 1): For \( n = 1 \), \( (AB)^1 = AB = A^1 B^1 \). Hence the result is true for \( n = 1 \).

Induction hypothesis: Assume that for some \( k \in \mathbb{N} \), the relation holds: \( (AB)^k = A^k B^k \).

Induction step (n = k + 1): Consider

\[ (AB)^{k+1} = (AB)^k (AB). \]

Using the induction hypothesis,

\[ (AB)^{k+1} = A^k B^k AB. \]

Since \( AB = BA \), matrix \( A \) commutes with \( B \). From this it follows that \( A \) also commutes with any power of \( B \): by a simple induction, \( AB^k = B^k A \) and \( A^k B = B A^k \). Hence

\[ A^k B^k A B = A^k A B^k B \]

because \( B^k A = A B^k \). Thus

\[ (AB)^{k+1} = A^{k+1} B^{k+1}. \]

This proves that if the statement holds for \( n = k \), it also holds for \( n = k + 1 \).

Conclusion: By the principle of mathematical induction, \( (AB)^n = A^n B^n \) for all positive integers \( n \), whenever \( AB = BA \).

Question. 50

Find \( x, y, z \) if

\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]

satisfies \( A' = A^{-1} \), where \( A' \) is the transpose of \( A \).

Answer:

The condition \( A' = A^{-1} \) means that \( A \) is an orthogonal matrix, i.e. \( AA' = I = A'A \). Hence the column vectors of \( A \) form an orthonormal set.

The columns of \( A \) are

\[ C_1 = \begin{bmatrix} 0 \\ x \\ x \end{bmatrix}, \quad C_2 = \begin{bmatrix} 2y \\ y \\ -y \end{bmatrix}, \quad C_3 = \begin{bmatrix} z \\ -z \\ z \end{bmatrix}. \]

Unit length conditions:

\( C_1 \cdot C_1 = 0^2 + x^2 + x^2 = 2x^2 = 1 \Rightarrow x^2 = \dfrac{1}{2} \Rightarrow x = \pm \dfrac{1}{\sqrt{2}}. \)

\( C_2 \cdot C_2 = (2y)^2 + y^2 + (-y)^2 = 6y^2 = 1 \Rightarrow y^2 = \dfrac{1}{6} \Rightarrow y = \pm \dfrac{1}{\sqrt{6}}. \)

\( C_3 \cdot C_3 = z^2 + (-z)^2 + z^2 = 3z^2 = 1 \Rightarrow z^2 = \dfrac{1}{3} \Rightarrow z = \pm \dfrac{1}{\sqrt{3}}. \)

Orthogonality conditions: One may verify that for these values, \( C_1 \cdot C_2 = C_1 \cdot C_3 = C_2 \cdot C_3 = 0 \), so the columns are mutually perpendicular and of unit length, hence \( A' = A^{-1} \).

Therefore, the required values are

\[ x = \pm \dfrac{1}{\sqrt{2}}, \quad y = \pm \dfrac{1}{\sqrt{6}}, \quad z = \pm \dfrac{1}{\sqrt{3}}. \]

Question. 51

If possible, using elementary row transformations, find the inverse of the following matrices:

(i) \( A_1 = \begin{bmatrix} 2 & -1 & 3 \\ -5 & 3 & 1 \\ -3 & 2 & 3 \end{bmatrix} \)

(ii) \( A_2 = \begin{bmatrix} 2 & 3 & -3 \\ -1 & -2 & 2 \\ 1 & 1 & -1 \end{bmatrix} \)

(iii) \( A_3 = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix} \).

Answer:

To find the inverse of a matrix by row transformations, form the augmented matrix \( [A \mid I] \) and perform elementary row operations until the left side becomes \( I \). The right side then gives \( A^{-1} \).

(i) Inverse of \( A_1 \)

Start with

\[ [A_1 \mid I] = \left[ \begin{array}{ccc|ccc} 2 & -1 & 3 & 1 & 0 & 0 \\ -5 & 3 & 1 & 0 & 1 & 0 \\ -3 & 2 & 3 & 0 & 0 & 1 \end{array} \right]. \]

By a sequence of row operations (such as \( R_2 \leftarrow 2R_2 + 5R_1 \), \( R_3 \leftarrow 2R_3 + 3R_1 \), and further simplifications), the left block can be reduced to the identity matrix. After complete reduction we obtain

\[ [I \mid A_1^{-1}] = \left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & -7 & -9 & 10 \\ 0 & 1 & 0 & -12 & -15 & 17 \\ 0 & 0 & 1 & 1 & 1 & -1 \end{array} \right]. \]

Thus

\[ A_1^{-1} = \begin{bmatrix} -7 & -9 & 10 \\ -12 & -15 & 17 \\ 1 & 1 & -1 \end{bmatrix}. \]

(ii) Inverse of \( A_2 \)

Form \( [A_2 \mid I] \) and perform similar row operations. In the process the left block reduces to a matrix with a zero row, showing that \( \det(A_2) = 0 \). Hence \( A_2 \) is singular and its inverse does not exist.

(iii) Inverse of \( A_3 \)

Start with

\[ [A_3 \mid I] = \left[ \begin{array}{ccc|ccc} 2 & 0 & -1 & 1 & 0 & 0 \\ 5 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 3 & 0 & 0 & 1 \end{array} \right]. \]

Applying suitable row operations (for example, make the first entry in the first column 1 by \( R_1 \leftarrow \tfrac{1}{2} R_1 \), eliminate the other entries in the first column, and proceed similarly for other columns), we eventually obtain

\[ [I \mid A_3^{-1}] = \left[ \begin{array}{ccc|ccc} 1 & 0 & 0 & 3 & -1 & 1 \\ 0 & 1 & 0 & -15 & 6 & -5 \\ 0 & 0 & 1 & 5 & -2 & 2 \end{array} \right]. \]

Thus

\[ A_3^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}. \]

Therefore:

\( A_1^{-1} = \begin{bmatrix} -7 & -9 & 10 \\ -12 & -15 & 17 \\ 1 & 1 & -1 \end{bmatrix}, \quad A_2^{-1} \) does not exist, and \( A_3^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix}. \)

Question. 52

Express the matrix

\[ A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{bmatrix} \]

as the sum of a symmetric and a skew-symmetric matrix.

Answer:

For any square matrix \( A \), it can be expressed uniquely as the sum of a symmetric matrix \( S \) and a skew-symmetric matrix \( K \) by the formulae

\[ S = \dfrac{1}{2}(A + A'), \qquad K = \dfrac{1}{2}(A - A'). \]

Here

\[ A = \begin{bmatrix} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{bmatrix}, \quad A' = \begin{bmatrix} 2 & 1 & 4 \\ 3 & -1 & 1 \\ 1 & 2 & 2 \end{bmatrix}. \]

Compute

\[ A + A' = \begin{bmatrix} 4 & 4 & 5 \\ 4 & -2 & 3 \\ 5 & 3 & 4 \end{bmatrix}, \quad S = \dfrac{1}{2}(A + A') = \begin{bmatrix} 2 & 2 & \tfrac{5}{2} \\ 2 & -1 & \tfrac{3}{2} \\ \tfrac{5}{2} & \tfrac{3}{2} & 2 \end{bmatrix}. \]

Similarly,

\[ A - A' = \begin{bmatrix} 0 & 2 & -3 \\ -2 & 0 & 1 \\ 3 & -1 & 0 \end{bmatrix}, \quad K = \dfrac{1}{2}(A - A') = \begin{bmatrix} 0 & 1 & -\tfrac{3}{2} \\ -1 & 0 & \tfrac{1}{2} \\ \tfrac{3}{2} & -\tfrac{1}{2} & 0 \end{bmatrix}. \]

Matrix \( S \) is symmetric since \( S' = S \), and matrix \( K \) is skew-symmetric since \( K' = -K \).

Finally,

\[ S + K = \begin{bmatrix} 2 & 2 & \tfrac{5}{2} \\ 2 & -1 & \tfrac{3}{2} \\ \tfrac{5}{2} & \tfrac{3}{2} & 2 \end{bmatrix} + \begin{bmatrix} 0 & 1 & -\tfrac{3}{2} \\ -1 & 0 & \tfrac{1}{2} \\ \tfrac{3}{2} & -\tfrac{1}{2} & 0 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 1 \\ 1 & -1 & 2 \\ 4 & 1 & 2 \end{bmatrix} = A. \]

Thus \( A \) has been expressed as the sum of a symmetric matrix and a skew-symmetric matrix:

\[ A = \underbrace{\begin{bmatrix} 2 & 2 & \tfrac{5}{2} \\ 2 & -1 & \tfrac{3}{2} \\ \tfrac{5}{2} & \tfrac{3}{2} & 2 \end{bmatrix}}_{\text{symmetric}} + \underbrace{\begin{bmatrix} 0 & 1 & -\tfrac{3}{2} \\ -1 & 0 & \tfrac{1}{2} \\ \tfrac{3}{2} & -\tfrac{1}{2} & 0 \end{bmatrix}}_{\text{skew-symmetric}}. \]

Objective Type Question

Choose the correct answer from the given four options:

Question.  53

The matrix \( P = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{bmatrix} \) is a

(a)

square matrix

(b)

diagonal matrix

(c)

unit matrix

(d)

none

Question.  54

Total number of possible matrices of order \( 3 \times 3 \) with each entry 2 or 0 is

(a)

9

(b)

27

(c)

81

(d)

512

Question.  55

If \( \begin{bmatrix} 2x + y & 4x \\ 5x - 7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y - 13 \\ y & x + 6 \end{bmatrix} \), then the value of \( x + y \) is

(a)

x = 3, y = 1

(b)

x = 2, y = 3

(c)

x = 2, y = 4

(d)

x = 3, y = 3

Question.  56

If

\( A = \dfrac{1}{\pi} \begin{bmatrix} \sin^{-1}(x \pi) & \tan^{-1}\left(\dfrac{x}{\pi}\right) \\ \sin^{-1}\left(\dfrac{x}{\pi}\right) & \cot^{-1}(x \pi) \end{bmatrix}, \quad B = \dfrac{1}{\pi} \begin{bmatrix} -\cos^{-1}(x \pi) & \tan^{-1}\left(\dfrac{x}{\pi}\right) \\ \sin^{-1}\left(\dfrac{x}{\pi}\right) & -\tan^{-1}(x \pi) \end{bmatrix} \)

then \( A - B \) is equal to

(a)

I

(b)

O

(c)

2I

(d)

\( \dfrac{1}{2} I \)

Question.  57

If A and B are two matrices of the order \( 3 \times m \) and \( 3 \times n \), respectively, and \( m = n \), then the order of matrix \( 5A - 2B \) is

(a)

m × 3

(b)

3 × 3

(c)

m × n

(d)

3 × n

Question.  58

If \( A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \), then \( A^2 \) is equal to

(a)

\( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)

(b)

\( \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \)

(c)

\( \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \)

(d)

\( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

Question.  59

If matrix \( A = [a_{ij}]_{2 \times 2} \), where \( a_{ij} = 1 \) if \( i \neq j \) and \( a_{ij} = 0 \) if \( i = j \), then \( A^2 \) is equal to

(a)

I

(b)

A

(c)

0

(d)

None of these

Question.  60

The matrix \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \) is a

(a)

identity matrix

(b)

symmetric matrix

(c)

skew symmetric matrix

(d)

none of these

Question.  61

The matrix \( \begin{bmatrix} 0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0 \end{bmatrix} \) is a

(a)

diagonal matrix

(b)

symmetric matrix

(c)

skew symmetric matrix

(d)

scalar matrix

Question.  62

If A is a matrix of order m × n and B is a matrix such that AB' and B'A are both defined, then order of matrix B is

(a)

m × m

(b)

n × n

(c)

n × m

(d)

m × n

Question.  63

If A and B are matrices of same order, then (AB' − BA') is a

(a)

skew symmetric matrix

(b)

null matrix

(c)

symmetric matrix

(d)

unit matrix

Question.  64

If A is a square matrix such that \( A^2 = I \), then \( (A^{-1})^3 + (A + I)^3 - 7A \) is equal to

(a)

A

(b)

I − A

(c)

I + A

(d)

3A

Question.  65

For any two matrices A and B, we have

(a)

AB = BA

(b)

AB ≠ BA

(c)

AB = O

(d)

None of the above

Question.  66

On using elementary column operations \( C_2 \rightarrow C_2 - 2C_1 \) in the following matrix equation

\( \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix} \), we have:

(a)

\( \begin{bmatrix} 1 & -5 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ 2 & 0 \end{bmatrix} \)

(b)

\( \begin{bmatrix} 1 & -5 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -0 & 2 \end{bmatrix} \)

(c)

\( \begin{bmatrix} 1 & -5 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -2 & 4 \end{bmatrix} \)

(d)

\( \begin{bmatrix} 1 & -5 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -3 & -3 \\ \end{bmatrix} \begin{bmatrix} 3 & -5 \\ 2 & 0 \end{bmatrix} \)

Question.  67

On using elementary row operation \( R_1 \rightarrow R_1 - 3R_2 \) in the following matrix equation:

\( \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \), we have:

(a)

\( \begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \)

(b)

\( \begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix} \)

(c)

\( \begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \)

(d)

\( \begin{bmatrix} 4 & 2 \\ -5 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \)

Fill in the Blanks

Question. 68

_____ matrix is both symmetric and skew symmetric matrix.

Answer:

Null matrix

Question. 69

Sum of two skew symmetric matrices is always _____ matrix.

Answer:

Skew symmetric matrix

Question. 70

The negative of a matrix is obtained by multiplying it by _____.

Answer:

-1

Question. 71

The product of any matrix by the scalar _____ is the null matrix.

Answer:

0

Question. 72

A matrix which is not a square matrix is called a _____ matrix.

Answer:

Rectangular matrix

Question. 73

Matrix multiplication is _____ over addition.

Answer:

Distributive

Question. 74

If A is a symmetric matrix, then A\(^3\) is a _____ matrix.

Answer:

Symmetric matrix

Question. 75

If A is a skew symmetric matrix, then A\(^2\) is a ____.

Answer:

Symmetric matrix

Question. 77

If A is skew symmetric, then kA is a _____ (k is any scalar).

Answer:

Skew symmetric matrix

Question. 79

If A is symmetric matrix, then B'AB is ____.

Answer:

Symmetric matrix

Question. 80

If A and B are symmetric matrices of same order, then AB is symmetric if and only if ____.

Answer:

AB = BA

Question. 81

In applying one or more row operations while finding A\(^{-1}\) by elementary row operations, we obtain all zeros in one or more, then A\(^{-1}\) ____.

Answer:

does not exist

Question. 76_i

If A and B are square matrices of the same order, then (i) (AB)' = ____.

Answer:

B' A'

Question. 76_ii

(ii) (kA)' = ____ (k is any scalar)

Answer:

kA

Question. 76_iii

(iii) [k(A − B)]' = ____.

Answer:

k(A − B)

Question. 78_i

If A and B are symmetric matrices, then (i) AB − BA is a ____.

Answer:

Skew symmetric matrix

Question. 78_ii

(ii) BA − 2AB is a ____.

Answer:

neither symmetric nor skew symmetric matrix

True or False

Question. 82

A matrix denotes a number.

Answer:

False

Question. 83

Matrices of any order can be added.

Answer:

False

Question. 84

Two matrices are equal if they have same number of rows and same number of columns.

Answer:

False

Question. 85

Matrices of different order can not be subtracted.

Answer:

True

Question. 86

Matrix addition is associative as well as commutative.

Answer:

True

Question. 87

Matrix multiplication is commutative.

Answer:

False

Question. 88

A square matrix where every element is unity is called an identity matrix.

Answer:

False

Question. 89

If A and B are two square matrices of the same order, then A + B = B + A.

Answer:

True

Question. 90

If A and B are two matrices of the same order, then A − B = B − A.

Answer:

False

Question. 91

If matrix AB = O, then A = O or B = O or both A and B are null matrices.

Answer:

False

Question. 92

Transpose of a column matrix is a column matrix.

Answer:

False

Question. 93

If A and B are two square matrices of the same order, then AB = BA.

Answer:

False

Question. 94

If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.

Answer:

True

Question. 95

If A and B are any two matrices of the same order, then (AB)' = A'B'.

Answer:

False

Question. 96

If (AB)' = B'A', where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.

Answer:

True

Question. 97

If A, B and C are square matrices of same order, then AB = AC always implies that B = C.

Answer:

False

Question. 98

AA' is always a symmetric matrix for any matrix A.

Answer:

True

Question. 99

If A = \( \begin{bmatrix} 2 & 3 & -1 \\ 1 & 4 & 2 \end{bmatrix} \) and B = \( \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix} \), then AB and BA are defined and equal.

Answer:

False

Question. 100

If A is skew symmetric matrix, then A\(^2\) is a symmetric matrix.

Answer:

True

Question. 101

(AB)-1 = A-1 B-1, where A and B are invertible matrices satisfying commutative property with respect to multiplication.

Answer:

True

NCERT Exemplar Solutions Class 12 – Mathematics – Chapter 3: Matrices | Detailed Answers