NCERT Exemplar Solutions
Class 12 - Mathematics - Chapter 3: Matrices
Objective Type Question

Choose the correct answer from the given four options:

Question.  53

The matrix \( P = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0 \end{bmatrix} \) is a

(a)

square matrix

(b)

diagonal matrix

(c)

unit matrix

(d)

none

Question.  54

Total number of possible matrices of order \( 3 \times 3 \) with each entry 2 or 0 is

(a)

9

(b)

27

(c)

81

(d)

512

Question.  55

If \( \begin{bmatrix} 2x + y & 4x \\ 5x - 7 & 4x \end{bmatrix} = \begin{bmatrix} 7 & 7y - 13 \\ y & x + 6 \end{bmatrix} \), then the value of \( x + y \) is

(a)

x = 3, y = 1

(b)

x = 2, y = 3

(c)

x = 2, y = 4

(d)

x = 3, y = 3

Question.  56

If

\( A = \dfrac{1}{\pi} \begin{bmatrix} \sin^{-1}(x \pi) & \tan^{-1}\left(\dfrac{x}{\pi}\right) \\ \sin^{-1}\left(\dfrac{x}{\pi}\right) & \cot^{-1}(x \pi) \end{bmatrix}, \quad B = \dfrac{1}{\pi} \begin{bmatrix} -\cos^{-1}(x \pi) & \tan^{-1}\left(\dfrac{x}{\pi}\right) \\ \sin^{-1}\left(\dfrac{x}{\pi}\right) & -\tan^{-1}(x \pi) \end{bmatrix} \)

then \( A - B \) is equal to

(a)

I

(b)

O

(c)

2I

(d)

\( \dfrac{1}{2} I \)

Question.  57

If A and B are two matrices of the order \( 3 \times m \) and \( 3 \times n \), respectively, and \( m = n \), then the order of matrix \( 5A - 2B \) is

(a)

m × 3

(b)

3 × 3

(c)

m × n

(d)

3 × n

Question.  58

If \( A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \), then \( A^2 \) is equal to

(a)

\( \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)

(b)

\( \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix} \)

(c)

\( \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \)

(d)

\( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)

Question.  59

If matrix \( A = [a_{ij}]_{2 \times 2} \), where \( a_{ij} = 1 \) if \( i \neq j \) and \( a_{ij} = 0 \) if \( i = j \), then \( A^2 \) is equal to

(a)

I

(b)

A

(c)

0

(d)

None of these

Question.  60

The matrix \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix} \) is a

(a)

identity matrix

(b)

symmetric matrix

(c)

skew symmetric matrix

(d)

none of these

Question.  61

The matrix \( \begin{bmatrix} 0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0 \end{bmatrix} \) is a

(a)

diagonal matrix

(b)

symmetric matrix

(c)

skew symmetric matrix

(d)

scalar matrix

Question.  62

If A is a matrix of order m × n and B is a matrix such that AB' and B'A are both defined, then order of matrix B is

(a)

m × m

(b)

n × n

(c)

n × m

(d)

m × n

Question.  63

If A and B are matrices of same order, then (AB' − BA') is a

(a)

skew symmetric matrix

(b)

null matrix

(c)

symmetric matrix

(d)

unit matrix

Question.  64

If A is a square matrix such that \( A^2 = I \), then \( (A^{-1})^3 + (A + I)^3 - 7A \) is equal to

(a)

A

(b)

I − A

(c)

I + A

(d)

3A

Question.  65

For any two matrices A and B, we have

(a)

AB = BA

(b)

AB ≠ BA

(c)

AB = O

(d)

None of the above

Question.  66

On using elementary column operations \( C_2 \rightarrow C_2 - 2C_1 \) in the following matrix equation

\( \begin{bmatrix} 1 & -3 \\ 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 2 & 4 \end{bmatrix} \), we have:

(a)

\( \begin{bmatrix} 1 & -5 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ 2 & 0 \end{bmatrix} \)

(b)

\( \begin{bmatrix} 1 & -5 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ -0 & 2 \end{bmatrix} \)

(c)

\( \begin{bmatrix} 1 & -5 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ -2 & 4 \end{bmatrix} \)

(d)

\( \begin{bmatrix} 1 & -5 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -3 & -3 \\ \end{bmatrix} \begin{bmatrix} 3 & -5 \\ 2 & 0 \end{bmatrix} \)

Question.  67

On using elementary row operation \( R_1 \rightarrow R_1 - 3R_2 \) in the following matrix equation:

\( \begin{bmatrix} 4 & 2 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \), we have:

(a)

\( \begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \)

(b)

\( \begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} -1 & -3 \\ 1 & 1 \end{bmatrix} \)

(c)

\( \begin{bmatrix} -5 & -7 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & -7 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \)

(d)

\( \begin{bmatrix} 4 & 2 \\ -5 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \)

NCERT Exemplar Solutions Class 12 – Mathematics – Chapter 3: Matrices – Objective Type Question | Detailed Answers