NCERT Exemplar Solutions
Class 12 - Mathematics - Chapter 3: Matrices
True or False

Question. 82

A matrix denotes a number.

Answer:

False

Question. 83

Matrices of any order can be added.

Answer:

False

Question. 84

Two matrices are equal if they have same number of rows and same number of columns.

Answer:

False

Question. 85

Matrices of different order can not be subtracted.

Answer:

True

Question. 86

Matrix addition is associative as well as commutative.

Answer:

True

Question. 87

Matrix multiplication is commutative.

Answer:

False

Question. 88

A square matrix where every element is unity is called an identity matrix.

Answer:

False

Question. 89

If A and B are two square matrices of the same order, then A + B = B + A.

Answer:

True

Question. 90

If A and B are two matrices of the same order, then A − B = B − A.

Answer:

False

Question. 91

If matrix AB = O, then A = O or B = O or both A and B are null matrices.

Answer:

False

Question. 92

Transpose of a column matrix is a column matrix.

Answer:

False

Question. 93

If A and B are two square matrices of the same order, then AB = BA.

Answer:

False

Question. 94

If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.

Answer:

True

Question. 95

If A and B are any two matrices of the same order, then (AB)' = A'B'.

Answer:

False

Question. 96

If (AB)' = B'A', where A and B are not square matrices, then number of rows in A is equal to number of columns in B and number of columns in A is equal to number of rows in B.

Answer:

True

Question. 97

If A, B and C are square matrices of same order, then AB = AC always implies that B = C.

Answer:

False

Question. 98

AA' is always a symmetric matrix for any matrix A.

Answer:

True

Question. 99

If A = \( \begin{bmatrix} 2 & 3 & -1 \\ 1 & 4 & 2 \end{bmatrix} \) and B = \( \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix} \), then AB and BA are defined and equal.

Answer:

False

Question. 100

If A is skew symmetric matrix, then A\(^2\) is a symmetric matrix.

Answer:

True

Question. 101

(AB)-1 = A-1 B-1, where A and B are invertible matrices satisfying commutative property with respect to multiplication.

Answer:

True

NCERT Exemplar Solutions Class 12 – Mathematics – Chapter 3: Matrices – True or False | Detailed Answers