NCERT Exemplar Solutions
Class 12 - Mathematics - Chapter 4: DETERMINANTS
Objective Type Question

Choose the correct answer from the given four options:

Question.  24

If \( \left| \begin{matrix} 2x & 5 \\ 8 & x \end{matrix} \right| = \left| \begin{matrix} 6 & -2 \\ 7 & 3 \end{matrix} \right| \), then value of x is

(a)

3

(b)

± 3

(c)

± 6

(d)

6

Question.  25

The value of determinant

\( \left| \begin{matrix} a-b & b+c & a \\ b-a & c+a & b \\ c-a & a+b & c \end{matrix} \right| \)

(a)

a³ + b³ + c³

(b)

3bc

(c)

a³ + b³ + c³ − 3abc

(d)

none of these

Question.  26

The area of a triangle with vertices (−3,0), (3,0) and (0,k) is 9 sq. units. The value of k will be

(a)

9

(b)

3

(c)

−9

(d)

6

Question.  27

The determinant

\( \left| \begin{matrix} b^2-ab & b-c & bc-ac \\ ab-a^2 & a-b & b^2-ab \\ bc-ac & c-a & ab-a^2 \end{matrix} \right| \)

equals

(a)

abc (b−c)(c−a)(a−b)

(b)

(b−c)(c−a)(a−b)

(c)

(a+b+c)(b−c)(c−a)(a−b)

(d)

None of these

Question.  28

The number of distinct real roots of

\( \left| \begin{matrix} \sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x \end{matrix} \right| = 0 \)

in the interval \( -\dfrac{\pi}{4} \le x \le \dfrac{\pi}{4} \)

(a)

0

(b)

2

(c)

1

(d)

3

Question.  29

If A, B and C are angles of a triangle, then the determinant

\( \left| \begin{matrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{matrix} \right| \)

(a)

0

(b)

−1

(c)

1

(d)

None of these

Question.  30

Let \( f(t)= \left| \begin{matrix} \cos t & 1 \\ 2\sin t & 2t \end{matrix} \right| \). Then \( \lim_{t→0} \dfrac{f(t)}{t^2} \) is equal to

(a)

0

(b)

−1

(c)

2

(d)

3

Question.  31

The maximum value of

\( \left| \begin{matrix} 1 & 1 \\ 1+\cos\theta & 1+\sin\theta \end{matrix} \right| \)

(\(\theta\) is real)

(a)

1/2

(b)

\( \dfrac{\sqrt{3}}{2} \)

(c)

√2

(d)

\( \dfrac{2\sqrt{3}}{4} \)

Question.  32

If \( f(x) = \left| \begin{matrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{matrix} \right| \), then

(a)

f(a) = 0

(b)

f(b) = 0

(c)

f(0) = 0

(d)

f(1) = 0

Question.  33

If \( A = \begin{pmatrix} 2 & \lambda & -3 \\ 0 & 2 & 5 \\ 1 & 1 & 3 \end{pmatrix} \), then \( A^{-1} \) exists if

(a)

\( \lambda = 2 \)

(b)

\( \lambda \neq 2 \)

(c)

\( \lambda = -2 \)

(d)

None of these

Question.  34

If A and B are invertible matrices, then which of the following is not correct?

(a)

adj A = |A| A^{-1}

(b)

det(A^{-1}) = [det(A)]^{-1}

(c)

(AB)^{-1} = B^{-1} A^{-1}

(d)

(A + B)^{-1} = B^{-1} + A^{-1}

Question.  35

If x, y, z are all different from zero and

\( \left| \begin{matrix} 1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z \end{matrix} \right| = 0 \), then value of \( x^{-1} + y^{-1} + z^{-1} \) is

(a)

xyz

(b)

x^{-1} y^{-1} z^{-1}

(c)

−x−y−z

(d)

−1

Question.  36

The value of the determinant

\( \left| \begin{matrix} x & x+y & x+2y \\ x+2y & x & x+y \\ x+y & x+2y & x \end{matrix} \right| \)

(a)

9x²(x+y)

(b)

9y²(x+y)

(c)

3y²(x+y)

(d)

7x²(x+y)

Question.  37

There are two values of a which make determinant \( \Delta = \left| \begin{matrix} 1 & -2 & 5 \\ 2 & a & -1 \\ 0 & 4 & 2a \end{matrix} \right| = 86 \). Sum of these numbers is

(a)

4

(b)

5

(c)

−4

(d)

9

NCERT Exemplar Solutions Class 12 – Mathematics – Chapter 4: DETERMINANTS – Objective Type Question | Detailed Answers