NCERT Solutions
Class 12 - Mathematics Part-1 - Chapter 3: MATRICES
Miscellaneous Exercise on Chapter 3

Question. 1

If \(A\) and \(B\) are symmetric matrices, prove that \(AB - BA\) is a skew symmetric matrix.

Answer:

Question. 2

Show that the matrix \(B'AB\) is symmetric or skew symmetric according as \(A\) is symmetric or skew symmetric.

Answer:

Question. 3

Find the values of \(x, y, z\) if the matrix

\[ A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix} \]

satisfy the equation \(A'A = I\).

Answer:

\(x = \pm \frac{1}{\sqrt{2}},\; y = \pm \frac{1}{\sqrt{6}},\; z = \pm \frac{1}{\sqrt{3}}\)

Question. 4

For what values of \(x\) :

\(\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 0 \\ 2 \\ x \end{bmatrix} = 0\)?

Answer:

\(x = -1\)

Question. 5

If \(A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}\), show that \(A^2 - 5A + 7I = 0\).

Answer:

Question. 6

Find \(x\), if

\(\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}\begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0\).

Answer:

\(x = \pm 4\sqrt{3}\)

Question. 7

A manufacturer produces three products \(x, y, z\) which he sells in two markets. Annual sales are indicated below:

Market I: \(x = 10000,\; y = 2000,\; z = 18000\)

Market II: \(x = 6000,\; y = 20000,\; z = 8000\)

(a) If unit sale prices of \(x, y\) and \(z\) are \(\text{₹}2.50,\; \text{₹}1.50\) and \(\text{₹}1.00\), respectively, find the total revenue in each market with the help of matrix algebra.

(b) If the unit costs of the above three commodities are \(\text{₹}2.00,\; \text{₹}1.00\) and 50 paise respectively. Find the gross profit.

Answer:

(a) Total revenue in the market - I = \(\text{₹}46000\)

Total revenue in the market - II = \(\text{₹}53000\)

(b) \(\text{₹}15000,\; \text{₹}17000\)

Question. 8

Find the matrix \(X\) so that

\(X\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}\).

Answer:

\(X = \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}\)

Question. 9

Choose the correct answer.

If \(A = \begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}\) is such that \(A^2 = I\), then

(A) \(1 + \alpha^2 + \beta\gamma = 0\)

(B) \(1 - \alpha^2 + \beta\gamma = 0\)

(C) \(1 - \alpha^2 - \beta\gamma = 0\)

(D) \(1 + \alpha^2 - \beta\gamma = 0\)

Answer:

(C)

Question. 10

Choose the correct answer.

If the matrix \(A\) is both symmetric and skew symmetric, then

(A) \(A\) is a diagonal matrix

(B) \(A\) is a zero matrix

(C) \(A\) is a square matrix

(D) None of these

Answer:

(B)

Question. 11

Choose the correct answer.

If \(A\) is a square matrix such that \(A^2 = A\), then \((I + A)^3 - 7A\) is equal to

(A) \(A\)

(B) \(I - A\)

(C) \(I\)

(D) \(3A\)

Answer:

(C)

NCERT Solutions Class 12 – Mathematics Part-1 – Chapter 3: MATRICES – Miscellaneous Exercise on Chapter 3 | Detailed Answers