NCERT Solutions
Class 12 - Mathematics Part-1 - Chapter 4: DETERMINANTS
Miscellaneous Exercise on Chapter 4

Question. 1

Prove that the determinant

\[ \left| \begin{matrix} x & \sin\theta & \cos\theta \\ -\sin\theta & -x & 1 \\ \cos\theta & 1 & x \end{matrix} \right| \]

is independent of \(\theta\).

Answer:

Question. 2

Evaluate

\[ \left| \begin{matrix} \cos\alpha\cos\beta & \cos\alpha\sin\beta & -\sin\alpha \\ -\sin\beta & \cos\beta & 0 \\ \sin\alpha\cos\beta & \sin\alpha\sin\beta & \cos\alpha \end{matrix} \right| \]

Answer:

1

Question. 3

If

\[ A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}, \]

find \((AB)^{-1}\).

Answer:

\((AB)^{-1} = \begin{bmatrix} 9 & -3 & 5 \\ -2 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}\)

Question. 4

Let

\[ A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}. \]

Verify that

(i) \([\operatorname{adj}A]^{-1} = \operatorname{adj}(A^{-1})\)

(ii) \((A^{-1})^{-1} = A\)

Answer:

Question. 5

Evaluate

\[ \left| \begin{matrix} x & y & x+y \\ y & x+y & x \\ x+y & x & y \end{matrix} \right| \]

Answer:

\(-2(x^3 + y^3)\)

Question. 6

Evaluate

\[ \left| \begin{matrix} 1 & x & y \\ 1 & x+y & y \\ 1 & x & x+y \end{matrix} \right| \]

Answer:

\(xy\)

Question. 7

Solve the system of equations:

\(\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4\)

\(\frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1\)

\(\frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2\)

Answer:

\(x = 2,\; y = 3,\; z = 5\)

Question. 8

Choose the correct answer.

If \(x, y, z\) are nonzero real numbers, then the inverse of matrix

\[ A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} \]

is

0

Question. 9

Let

\[ A = \begin{bmatrix} 1 & \sin\theta & 1 \\ -\sin\theta & 1 & \sin\theta \\ -1 & -\sin\theta & 1 \end{bmatrix}, \quad 0 \le \theta \le 2\pi. \]

Then

Answer:

3
NCERT Solutions Class 12 – Mathematics Part-1 – Chapter 4: DETERMINANTS – Miscellaneous Exercise on Chapter 4 | Detailed Answers