\(82546=8\times1000+2\times1000+5\times100+4\times10+6\).
Step 1: Work out the right-hand side (RHS) slowly.
\(8\times1000=8000\)
\(2\times1000=2000\)
\(5\times100=500\)
\(4\times10=40\)
\(6=6\)
Step 2: Add these results.
First add the thousands: \(8000+2000=10000\)
Now add the hundreds: \(10000+500=10500\)
Add the tens: \(10500+40=10540\)
Add the ones: \(10540+6=10546\)
So, RHS = \(10546\).
Step 3: Compare with the left-hand side (LHS).
LHS = \(82546\)
RHS = \(10546\)
They are not equal. Therefore, the statement is false.
Note (correct place-value form of 82,546):
\(82546 = 8\times10000 + 2\times1000 + 5\times100 + 4\times10 + 6\)