\(532235=5\times100000+3\times10000+2\times1000+2\times100+3\times10+5\).
Goal: Check if the expanded form matches the number 532235.
Step 1: Write place values (left to right).
Hundred-thousands, ten-thousands, thousands, hundreds, tens, ones.
Step 2: Match each digit with its place value.
Digit 5 in hundred-thousands place: \(5 \times 100000\)
Digit 3 in ten-thousands place: \(3 \times 10000\)
Digit 2 in thousands place: \(2 \times 1000\)
Digit 2 in hundreds place: \(2 \times 100\)
Digit 3 in tens place: \(3 \times 10\)
Digit 5 in ones place: \(5 \times 1\)
Step 3: Write the expanded form by adding them.
\(5\times100000 + 3\times10000 + 2\times1000 + 2\times100 + 3\times10 + 5\)
Step 4: Calculate each part.
\(5\times100000 = 500000\)
\(3\times10000 = 30000\)
\(2\times1000 = 2000\)
\(2\times100 = 200\)
\(3\times10 = 30\)
\(5\times1 = 5\)
Step 5: Add step by step.
\(500000 + 30000 = 530000\)
\(530000 + 2000 = 532000\)
\(532000 + 200 = 532200\)
\(532200 + 30 = 532230\)
\(532230 + 5 = 532235\)
Conclusion: The sum is \(532235\). The expanded form is correct, so the statement is True.