\(\tfrac{8}{18}-\tfrac{8}{15}=\tfrac{8}{3}\).
We need to check if ( frac{8}{18} - frac{8}{15} = frac{8}{3} ).
Find a common denominator for ( frac{8}{18} ) and ( frac{8}{15} ).
( ext{LCM}(18, 15) = 90 ).
Rewrite each fraction with denominator 90.
( frac{8}{18} = frac{8 imes 5}{18 imes 5} = frac{40}{90} )
( frac{8}{15} = frac{8 imes 6}{15 imes 6} = frac{48}{90} )
Subtract the numerators (same denominator).
( frac{40}{90} - frac{48}{90} = frac{40 - 48}{90} = frac{-8}{90} )
Simplify the result.
( frac{-8}{90} = frac{-4}{45} ) (divide top and bottom by 2)
Compare with the right side ( frac{8}{3} ).
Write ( frac{8}{3} ) with denominator 45: ( frac{8}{3} = frac{8 imes 15}{3 imes 15} = frac{120}{45} )
( frac{-4}{45} eq frac{120}{45} )
Conclusion: The statement is false because
( frac{8}{18} - frac{8}{15} = frac{-4}{45} ), not ( frac{8}{3} ).