17. In Fig. 9.22, ΔMNO is a right-angled triangle. Its legs are 6 cm and 8 cm long. Length of perpendicular NP on the side MO is
(a) 4.8 cm
(b) 3.6 cm
(c) 2.4 cm
(d) 1.2 cm
Area of ΔMNO = \( \tfrac{1}{2} \times 6 \times 8 = 24 \).
Also, area = \( \tfrac{1}{2} \times MO \times NP \).
MO = \( \sqrt{6^2 + 8^2} = 10 \).
So, 24 = \( \tfrac{1}{2} \times 10 \times NP \implies NP = 4.8 \, cm \).