Write the following statements in the form of algebraic expressions and write whether it is monomial, binomial or trinomial.
(a) x is multiplied by itself and then added to the product of x and y.
(b) Three times of p and two times of q are multiplied and then subtracted from r.
(c) Product of p, twice of q and thrice of r.
(d) Sum of the products of a and b, b and c and c and a.
(e) Perimeter of an equilateral triangle of side x.
(f) Perimeter of a rectangle with length p and breadth q.
(g) Area of a triangle with base m and height n.
(h) Area of a square with side x.
(i) Cube of s subtracted from cube of t.
(j) Quotient of x and 15 multiplied by x.
(k) The sum of square of x and cube of z.
(l) Two times q subtracted from cube of q.
(a) x² + xy, Binomial
(b) r − (3p × 2q), Binomial
(c) p × 2q × 3r, Monomial
(d) ab + bc + ca, Trinomial
(e) 3x, Monomial
(f) 2p + 2q, Binomial
(g) 1/2 mn, Monomial
(h) x², Monomial
(i) t³ − s³, Binomial
(j) (x ÷ 15)x or x²/15, Monomial
(k) x² + z³, Binomial
(l) q³ − 2q, Binomial
Write the coefficient of x² in the following:
(i) x² − x + 4
(ii) x³ − 2x² + 3x + 1
(iii) 1 + 2x + 3x² + 4x³
(iv) y + y²x + y³x² + y⁴x³
(i) 1
(ii) −2
(iii) 3
(iv) y³
Find the numerical coefficient of each of the terms:
(i) x³y²z, xy²z³, −3xy²z³, 5x³y²z, −7x²y²z²
(ii) 10xyz, −7xy²z, −9xyz, 2xy²z, 2x²y²z²
(i) 1, 1, −3, 5, −7
(ii) 10, −7, −9, 2, 2
Simplify the following by combining the like terms and then write whether the expression is a monomial, a binomial or a trinomial.
(a) 3x²yz² − 3xy²z + x²y² + 7xy²z
(b) x⁴ + 3xy + 3x²y² − 3xy − 3xy³ + y⁴ − 3x²y²
(c) p³q²r + pq²r³ + 3p²qr² − 6p²qr²
(d) 2a + 2b + 2c − 2a − 2b − 2c − 2b + 2c + 2a
(e) 50x³ − 21x + 107 + 41x³ − x + 1 − 93 + 71x − 31x³
(a) 4x²yz² + 4xy²z, Binomial
(b) x⁴ − 3xy³ + y⁴, Trinomial
(c) p³q²r + pq²r³ − 6p²qr², Trinomial
(d) 2a − 2b + 2c, Trinomial
(e) 60x³ + 49x + 15, Trinomial
Add the following expressions:
(a) p² − 7pq − q² and −3p² − 2pq + 7q²
(b) x³ − x²y − xy² − y³ and x³ − 2x²y + 3xy² + 4y
(c) ab + bc + ca and −bc − ca − ab
(d) p² − q + r, q² − r + p and r² − p + q
(e) x³y² + x²y³ + 3y⁴ and x⁴ + 3x²y³ + 4y⁴
(f) p²qr + pq²r + pqr² and −3pq²r − 2pqr²
(g) uv − uw, uw − uv and uw − uw
(h) a² + 3ab − bc, b² + 3bc − ca and c² + 3ca − ab
(i) 5/8 p⁴ + 2p² + 5/8 ; 1/8 − 17p + 9/8 p² and p⁵ − p³ + 7
(j) t − t² − t³ − 14 ; 15t³ + 13 + 9t − 8t² ; 12t² − 19 − 24t and 4t − 9t² + 19t³
(a) −2p² − 9pq + 6q²
(b) 2x³ − 3x²y + 2xy² − y³ + 4y
(c) zero
(d) p² + q² + r²
(e) x⁴ + 4x²y³ + 7y⁴
(f) p²qr − 2pq²r − pqr²
(g) zero
(h) a² + b² + c² + 2ab + 2bc + 2ac
(i) p⁵ + 5/8 p⁴ − p³ + 25/8 p² − 17p + 31/4
(j) 33t³ − 6t² − 10t − 20
Subtract:
(a) −7p²qr from −3p²qr.
(b) −a² − ab from b² + ab.
(c) −4x²y − y³ from x³ + 3xy² − x²y.
(d) x⁴ + 3x²y³ + 5y⁴ from 2x⁴ − x³y³ + 7y⁴.
(e) ab − bc − ca from −ab + bc + ca.
(f) −2a² − 2b² from −a² − b² + 2ab.
(g) x³y² + 3x²y² − 7xy³ from x⁴ + y⁴ + 3x²y² − xy³.
(h) 2(ab + bc + ca) from −ab − bc − ca.
(i) 4.5x⁵ − 3.4x² + 5.7 from 5x⁴ − 3.2x² − 7.3x.
(j) 11 − 15y² from y³ − 15y² − y − 11.
(a) 4p²qr
(b) a² + b² + 2ab
(c) x³ + 3xy² + 2x²y − y³
(d) x⁴ − 4x²y³ + 2y⁴
(e) −2ab + 2bc + 2ac
(f) a² + b² + 2ab
(g) x⁴ + y⁴ − x²y² + 6xy³
(h) −3ab − 3bc − 3ac
(i) −4.5x⁵ + 5x⁴ + 0.2x² − 7.3x − 5.7
(j) y³ − y − 22
(a) What should be added to x³ + 3x²y + 3xy² + y³ to get x³ + y³?
(b) What should be added to 3pq + 5p²q² + p³ to get p³ + 2p²q² + 4pq?
(a) −3x²y − 3xy²
(b) −3p²q² + pq
(a) What should be subtracted from 2x³ − 3x²y + 2xy² + 3y³ to get x³ − x²y − xy² − y³?
(b) What should be subtracted from −7mn + 2m² + 3n² to get m² + 2mn + n²?
(a) x³ − x²y − xy² − y³
(b) m² + 2n² − 2mn
How much is 21a³ − 17a² less than 89a³ − 64a² + 6a + 16?
68a³ − 47a² + 6a + 16
How much is y⁴ − 12y² + y + 14 greater than 17y³ + 34y² − 51y + 68?
y⁴ − 17y³ − 46y² + 52y − 54
How much does 93p² − 55p + 4 exceed 13p³ − 5p² + 17p − 90?
−13p³ + 98p² − 72p + 94
To what expression must 99x³ − 33x² − 13x − 41 be added to make the sum zero?
−99x³ + 33x² + 13x + 41
Subtract \(9a^2 - 15a + 3\) from unity.
-9a + 15a - 2
Find the values of the following polynomials at \(a = -2\) and \(b = 3\):
(a) \(a^2 + 2ab + b^2\)
(b) \(a^2 - 2ab + b^2\)
(c) \(a^3 + 3a^2b + 3ab^2 + b^3\)
(d) \(a^3 - 3a^2b + 3ab^2 - b^3\)
(e) \(\dfrac{a^2 + b^2}{3}\)
(f) \(\dfrac{a^2 - b^2}{3}\)
(g) \(\dfrac{a}{b} + \dfrac{b}{a}\)
(h) \(a^2 + b^2 - ab - b^2 - a^2\)
(a) 1
(b) 25
(c) 1
(d) -125
(e) 13/3
(f) -5/3
(g) -13/6
(h) 6
Find the values of following polynomials at \(m = 1\), \(n = -1\) and \(p = 2\):
(a) \(m + n + p\)
(b) \(m^2 + n^2 + p^2\)
(c) \(m^3 + n^3 + p^3\)
(d) \(mn + np + pm\)
(e) \(m^3 + n^3 + p^3 - 3mnp\)
(f) \(m^2n^2 + n^2p^2 + p^2m^2\)
(a) 2
(b) 6
(c) 8
(d) -1
(e) 14
(f) 9
If \(A = 3x^2 - 4x + 1\), \(B = 5x^2 + 3x - 8\) and \(C = 4x^2 - 7x + 3\), then find:
(i) \((A + B) - C\)
(ii) \(B + C - A\)
(iii) \(A + B + C\)
(i) 4x² + 6x - 10
(ii) 6x² - 6
(iii) 12x² - 8x - 4
If \(P = -(x - 2)\), \(Q = -2(y +1)\) and \(R = -x + 2y\), find \(a\), when \(P + Q + R = ax\).
a = -2
From the sum of \(x^2 - y^2 - 1\), \(y^2 - x^2 - 1\) and \(1 - x^2 - y^2\) subtract \((1 + y^2)\).
-x²
Subtract the sum of \(12ab - 10b^2 - 18a^2\) and \(9ab + 12b^2 + 14a^2\) from the sum of \(ab + 2b^2\) and \(3b^2 - a^2\).
-3a² + 3b² - 20ab
Each symbol given below represents an algebraic expression:
△ = 2x² + 3y, ○ = 5x² + 3x, □ = 8y² - 3x² + 2x + 3y
The symbols are then represented in the expression: △ + ○ - □
Find the expression which is represented by the above symbols.
10x² - 8y² + x
Observe the following nutritional chart carefully (per unit = 100g):
Rajma 60g
Cabbage 5g
Potato 22g
Carrot 11g
Tomato 4g
Apples 14g
Write an algebraic expression for the amount of carbohydrates in 'g' for
(a) y units of potatoes and 2 units of rajma
(b) 2x units tomatoes and y units apples
(a) 22y + 120
(b) 8x + 14y
Arjun bought a rectangular plot with length x and breadth y and then sold a triangular part of it whose base is y and height is z. Find the area of the remaining part of the plot.
y\[x - \tfrac{1}{2}z\]
Amisha has a square plot of side m and another triangular plot with base and height each equal to m. What is the total area of both plots?
\tfrac{3}{2} m²
A taxi service charges ₹8 per km and levies a fixed charge of ₹50. Write an algebraic expression for the above situation, if the taxi is hired for x km.
8x + 50
Shiv works in a mall and gets paid ₹50 per hour. Last week he worked for 7 hours and this week he will work for x hours. Write an algebraic expression for the money paid to him for both the weeks.
350 + 50x
or
50(x + 7)
Sonu and Raj have to collect different kinds of leaves for science project. They go to a park where Sonu collects 12 leaves and Raj collects x leaves. After some time Sonu loses 3 leaves and Raj collects 2x leaves. Write an algebraic expression to find the total number of leaves collected by both of them.
9 + 3x
A school has a rectangular play ground with length x and breadth y and a square lawn with side x as shown in the figure given below. What is the total perimeter of both of them combined together?
4x + 2y
The rate of planting the grass is ₹x per square metre. Find the cost of planting the grass on a triangular lawn whose base is y metres and height is z metres.
\tfrac{1}{2} xyz
Find the perimeter of the figure given below:
(sides labeled \(5x - y\) and \(2(x + y)\) in the diagram)
14x + 2y