Find the sum of the following APs:
(i) \(245\)
(ii) \(-180\)
(iii) \(5505\)
(iv) \(\dfrac{33}{20}\)
Formula used: For an AP with first term \(a\), common difference \(d\) and \(n\) terms, the sum of the first \(n\) terms is
\[S_n = \frac{n}{2} \{2a + (n - 1)d\}\]
We first identify \(a\), \(d\) and \(n\) for each AP, then apply the formula.
First term: \(a = 2\)
Common difference: \(d = 7 - 2 = 5\)
Number of terms: \(n = 10\)
Sum:
\[S_{10} = \frac{10}{2} \{2 \cdot 2 + (10 - 1) \cdot 5\}\]
\[S_{10} = 5 \{4 + 9 \cdot 5\} = 5 \{4 + 45\} = 5 \cdot 49 = 245\]
So, sum = 245.
First term: \(a = -37\)
Common difference: \(d = -33 - (-37) = 4\)
Number of terms: \(n = 12\)
Sum:
\[S_{12} = \frac{12}{2} \{2(-37) + (12 - 1) \cdot 4\}\]
\[S_{12} = 6 \{-74 + 11 \cdot 4\} = 6 \{-74 + 44\} = 6 \cdot (-30) = -180\]
So, sum = -180.
First term: \(a = 0.6\)
Common difference: \(d = 1.7 - 0.6 = 1.1\)
Number of terms: \(n = 100\)
Sum:
\[S_{100} = \frac{100}{2} \{2(0.6) + (100 - 1) \cdot 1.1\}\]
\[S_{100} = 50 \{1.2 + 99 \cdot 1.1\}\]
\[99 \cdot 1.1 = 108.9\]
So,
\[S_{100} = 50 \cdot (1.2 + 108.9) = 50 \cdot 110.1 = 5505\]
So, sum = 5505.
First term: \(a = \dfrac{1}{15}\)
Common difference:
\[d = \frac{1}{12} - \frac{1}{15} = \frac{5 - 4}{60} = \frac{1}{60}\]
Number of terms: \(n = 11\)
Sum:
\[S_{11} = \frac{11}{2} \left\{2 \cdot \frac{1}{15} + (11 - 1) \cdot \frac{1}{60} \right\}\]
\[2 \cdot \frac{1}{15} = \frac{2}{15} = \frac{8}{60}\]
\[10 \cdot \frac{1}{60} = \frac{10}{60} = \frac{1}{6} = \frac{10}{60}\]
So inside the brackets:
\[\frac{8}{60} + \frac{10}{60} = \frac{18}{60} = \frac{3}{10}\]
Thus,
\[S_{11} = \frac{11}{2} \cdot \frac{3}{10} = \frac{33}{20}\]
So, sum = \(\dfrac{33}{20}\).