In ΔABC, right-angled at B, AB = 24 cm, BC = 7 cm. Determine:
(i) sin A, cos A
(ii) sin C, cos C
(i) sin A = \(\dfrac{7}{25}\), cos A = \(\dfrac{24}{25}\)
(ii) sin C = \(\dfrac{24}{25}\), cos C = \(\dfrac{7}{25}\)
In Fig. 8.13, find tan P − cot R.

0
If sin A = \(\dfrac{3}{4}\), calculate cos A and tan A.
cos A = \(\dfrac{\sqrt{7}}{4}\), tan A = \(\dfrac{3}{\sqrt{7}}\)
Given 15 cot A = 8, find sin A and sec A.
sin A = \(\dfrac{15}{17}\), sec A = \(\dfrac{17}{8}\)
Given sec θ = \(\dfrac{13}{12}\), calculate all other trigonometric ratios.
sin θ = \(\dfrac{5}{13}\), cos θ = \(\dfrac{12}{13}\), tan θ = \(\dfrac{5}{12}\), cot θ = \(\dfrac{12}{5}\), cosec θ = \(\dfrac{13}{5}\)
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
If cot θ = \(\dfrac{7}{8}\), evaluate:
(i) \(\dfrac{(1 + \sin θ)(1 - \sin θ)}{(1 + \cos θ)(1 - \cos θ)}\)
(ii) cot² θ
(i) \(\dfrac{49}{64}\)
(ii) \(\dfrac{49}{64}\)
If 3 cot A = 4, check whether \(\dfrac{1 - \tan^2 A}{1 + \tan^2 A} = \cos^2 A - \sin^2 A\) or not.
Yes
In triangle ABC, right-angled at B, if tan A = \(\dfrac{1}{\sqrt{3}}\), find:
(i) sin A cos C + cos A sin C
(ii) cos A cos C − sin A sin C
(i) 1
(ii) 0
In ΔPQR, right-angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine sin P, cos P and tan P.
sin P = \(\dfrac{12}{13}\)
cos P = \(\dfrac{5}{13}\)
tan P = \(\dfrac{12}{5}\)
State whether the following are true or false. Justify your answer:
(i) The value of tan A is always less than 1.
(ii) sec A = \(\dfrac{12}{5}\) for some value of angle A.
(iii) cos A is the abbreviation used for the cosecant of angle A.
(iv) cot A is the product of cot and A.
(v) sin θ = \(\dfrac{4}{3}\) for some angle θ.
(i) False
(ii) True
(iii) False
(iv) False
(v) False
Evaluate the following:
(i) \(1\)
(ii) \(2\)
(iii) \(\dfrac{3\sqrt{2} - \sqrt{6}}{8}\)
(iv) \(\dfrac{43 - 24\sqrt{3}}{11}\)
(v) \(\dfrac{67}{12}\)
Choose the correct option and justify your choice:
(i) A
(ii) D
(iii) A
(iv) C
If \(\tan (A + B) = \sqrt{3}\) and \(\tan (A - B) = \dfrac{1}{\sqrt{3}}\); \(0^\circ < A + B \leq 90^\circ\), \(A > B\), find \(A\) and \(B\).
\(\angle A = 45^\circ,\ \angle B = 15^\circ\)
State whether the following are true or false. Justify your answer.
(i) False
(ii) True
(iii) False
(iv) False
(v) True
Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
\( \sin A = \dfrac{1}{\sqrt{1 + \cot^2 A}} \)
\( \tan A = \dfrac{1}{\cot A} \)
\( \sec A = \dfrac{\sqrt{1 + \cot^2 A}}{\cot A} \)
Write all the other trigonometric ratios of \(\angle A\) in terms of sec A.
\( \sin A = \dfrac{\sqrt{\sec^2 A - 1}}{\sec A} \)
\( \cos A = \dfrac{1}{\sec A} \)
\( \tan A = \sqrt{\sec^2 A - 1} \)
\( \cot A = \dfrac{1}{\sqrt{\sec^2 A - 1}} \)
\( \text{cosec } A = \dfrac{\sec A}{\sqrt{\sec^2 A - 1}} \)
Choose the correct option. Justify your choice:
(i) B
(ii) C
(iii) D
(iv) D
Prove the following identities, where the angles involved are acute angles for which the expressions are defined: