Express the trigonometric ratios sin A, sec A and tan A in terms of cot A.
\( \sin A = \dfrac{1}{\sqrt{1 + \cot^2 A}} \)
\( \tan A = \dfrac{1}{\cot A} \)
\( \sec A = \dfrac{\sqrt{1 + \cot^2 A}}{\cot A} \)
Write all the other trigonometric ratios of \(\angle A\) in terms of sec A.
\( \sin A = \dfrac{\sqrt{\sec^2 A - 1}}{\sec A} \)
\( \cos A = \dfrac{1}{\sec A} \)
\( \tan A = \sqrt{\sec^2 A - 1} \)
\( \cot A = \dfrac{1}{\sqrt{\sec^2 A - 1}} \)
\( \csc A = \dfrac{\sec A}{\sqrt{\sec^2 A - 1}} \)
Choose the correct option. Justify your choice:
(i) B
(ii) C
(iii) D
(iv) D
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
No answers provided in key (identity proofs).