NCERT Solutions
Class 10 - Mathematics - Chapter 8: INTRODUCTION TO TRIGONOMETRY - Exercise 8.3
Question 2

Question. 2

Write all the other trigonometric ratios of \(\angle A\) in terms of sec A.

Answer:

\( \sin A = \dfrac{\sqrt{\sec^2 A - 1}}{\sec A} \)

\( \cos A = \dfrac{1}{\sec A} \)

\( \tan A = \sqrt{\sec^2 A - 1} \)

\( \cot A = \dfrac{1}{\sqrt{\sec^2 A - 1}} \)

\( \text{cosec } A = \dfrac{\sec A}{\sqrt{\sec^2 A - 1}} \)

Video Explanation:

Detailed Answer with Explanation:

Goal: Express all other trigonometric ratios of \(\angle A\) in terms of \(\sec A\).

Step 1: Start with the definition of secant

We know:

\(\sec A = \dfrac{1}{\cos A}\)

So, directly:

\(\cos A = \dfrac{1}{\sec A}\)

Step 2: Use the identity connecting \(\sec\) and \(\tan\)

One very important identity is:

\(\sec^2 A = 1 + \tan^2 A\)

Rearrange it to get \(\tan^2 A\):

\(\tan^2 A = \sec^2 A - 1\)

Now take square root on both sides:

\(\tan A = \sqrt{\sec^2 A - 1}\)

Student Note: In school problems like this, we usually take the positive root because \(A\) is taken as an acute angle in a right triangle (so trigonometric ratios are positive).

Step 3: Find \(\sin A\) using \(\tan A\) and \(\sec A\)

We know:

\(\tan A = \dfrac{\sin A}{\cos A}\) and \(\sec A = \dfrac{1}{\cos A}\).

Divide \(\tan A\) by \(\sec A\):

\(\dfrac{\tan A}{\sec A} = \dfrac{\sin A/\cos A}{1/\cos A} = \sin A\)

So,

\(\sin A = \dfrac{\tan A}{\sec A}\)

Substitute \(\tan A = \sqrt{\sec^2 A - 1}\):

\(\sin A = \dfrac{\sqrt{\sec^2 A - 1}}{\sec A}\)

Step 4: Find \(\cot A\) and \(\text{cosec } A\) using reciprocals

\(\cot A\) is the reciprocal of \(\tan A\):

\(\cot A = \dfrac{1}{\tan A} = \dfrac{1}{\sqrt{\sec^2 A - 1}}\)

\(\text{cosec } A\) is the reciprocal of \(\sin A\):

\(\text{cosec } A = \dfrac{1}{\sin A} = \dfrac{1}{\dfrac{\sqrt{\sec^2 A - 1}}{\sec A}} = \dfrac{\sec A}{\sqrt{\sec^2 A - 1}}\)

Final Results (in terms of \(\sec A\)):

\(\cos A = \dfrac{1}{\sec A}\)

\(\tan A = \sqrt{\sec^2 A - 1}\)

\(\sin A = \dfrac{\sqrt{\sec^2 A - 1}}{\sec A}\)

\(\cot A = \dfrac{1}{\sqrt{\sec^2 A - 1}}\)

\(\text{cosec } A = \dfrac{\sec A}{\sqrt{\sec^2 A - 1}}\)

NCERT Solutions – Chapter-wise Questions & Answers