NCERT Solutions
Class 10 - Mathematics - Chapter 8: INTRODUCTION TO TRIGONOMETRY - Exercise 8.3
Question 3

Question. 3

Choose the correct option. Justify your choice:

  1. \(9 \sec^2 A - 9 \tan^2 A =\)
    (A) 1   (B) 9   (C) 8   (D) 0
  2. \((1 + \tan \theta + \sec \theta)(1 + \cot \theta - \text{cosec } \theta) =\)
    (A) 0   (B) 1   (C) 2   (D) -1
  3. \((\sec A + \tan A)(1 - \sin A) =\)
    (A) \sec A   (B) \sin A   (C) \text{cosec } A   (D) \cos A
  4. \(\dfrac{1 + \tan^2 A}{1 + \cot^2 A} =\)
    (A) \sec^2 A   (B) -1   (C) \cot^2 A   (D) \tan^2 A

Answer:

(i) B

(ii) C

(iii) D

(iv) D

Video Explanation:

Detailed Answer with Explanation:

We will use standard trigonometric identities to simplify each expression and then match it with the correct option.

Useful identities (keep in mind):

\(\sec^2 A - \tan^2 A = 1\),   \(1+\tan^2 A = \sec^2 A\),   \(1+\cot^2 A = \text{cosec }^2 A\),

\(\sec A + \tan A = \dfrac{1+\sin A}{\cos A}\),   \(\text{cosec }\theta - \cot\theta = \dfrac{1-\cos\theta}{\sin\theta}\).

(i) \(9\sec^2 A - 9\tan^2 A\)

Take 9 common:

\(9\sec^2 A - 9\tan^2 A = 9(\sec^2 A - \tan^2 A)\).

Using \(\sec^2 A - \tan^2 A = 1\),

\(= 9 \times 1 = 9\).

Correct option: (B) 9.

(ii) \((1+\tan\theta+\sec\theta)(1+\cot\theta-\text{cosec }\theta)\)

Step 1: Rewrite each bracket in a helpful way.

\(1+\tan\theta+\sec\theta = 1 + \dfrac{\sin\theta}{\cos\theta} + \dfrac{1}{\cos\theta} = 1 + \dfrac{\sin\theta+1}{\cos\theta}\)

\(= \dfrac{\cos\theta + \sin\theta + 1}{\cos\theta}\).

Also,

\(1+\cot\theta-\text{cosec }\theta = 1 + \dfrac{\cos\theta}{\sin\theta} - \dfrac{1}{\sin\theta} = 1 + \dfrac{\cos\theta-1}{\sin\theta}\)

\(= \dfrac{\sin\theta + \cos\theta - 1}{\sin\theta}\).

Step 2: Multiply them:

\((1+\tan\theta+\sec\theta)(1+\cot\theta-\text{cosec }\theta) = \dfrac{(\sin\theta+\cos\theta+1)(\sin\theta+\cos\theta-1)}{\sin\theta\cos\theta}\)

Step 3: Use \((x+1)(x-1)=x^2-1\) with \(x=\sin\theta+\cos\theta\):

\(= \dfrac{(\sin\theta+\cos\theta)^2 - 1}{\sin\theta\cos\theta}\)

Expand \((\sin\theta+\cos\theta)^2\):

\(\sin^2\theta + \cos^2\theta + 2\sin\theta\cos\theta = 1 + 2\sin\theta\cos\theta\).

So numerator becomes:

\((1 + 2\sin\theta\cos\theta) - 1 = 2\sin\theta\cos\theta\).

Therefore,

\(= \dfrac{2\sin\theta\cos\theta}{\sin\theta\cos\theta} = 2\).

Correct option: (C) 2.

(iii) \((\sec A + \tan A)(1-\sin A)\)

Step 1: Write \(\sec A + \tan A\) in terms of \(\sin A\) and \(\cos A\):

\(\sec A + \tan A = \dfrac{1}{\cos A} + \dfrac{\sin A}{\cos A} = \dfrac{1+\sin A}{\cos A}\).

Step 2: Multiply:

\((\sec A + \tan A)(1-\sin A) = \dfrac{1+\sin A}{\cos A}(1-\sin A)\)

\(= \dfrac{(1+\sin A)(1-\sin A)}{\cos A}\)

\(= \dfrac{1-\sin^2 A}{\cos A}\).

Step 3: Use \(1-\sin^2 A = \cos^2 A\):

\(= \dfrac{\cos^2 A}{\cos A} = \cos A\).

Correct option: (D) \(\cos A\).

(iv) \(\dfrac{1+\tan^2 A}{1+\cot^2 A}\)

Use identities:

\(1+\tan^2 A = \sec^2 A\) and \(1+\cot^2 A = \text{cosec }^2 A\).

So,

\(\dfrac{1+\tan^2 A}{1+\cot^2 A} = \dfrac{\sec^2 A}{\text{cosec }^2 A}\).

Now write in \(\sin\) and \(\cos\):

\(\dfrac{\sec^2 A}{\text{cosec }^2 A} = \dfrac{\frac{1}{\cos^2 A}}{\frac{1}{\sin^2 A}} = \dfrac{\sin^2 A}{\cos^2 A} = \tan^2 A\).

Correct option: (D) \(\tan^2 A\).

Final Answers: (i) B, (ii) C, (iii) D, (iv) D.

NCERT Solutions – Chapter-wise Questions & Answers