Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
Note: In identity proofs, we usually start from one side (LHS) and simplify step-by-step using standard identities until we get the other side (RHS). Since the angles are acute, all values like \(\sin A, \cos A\) are positive and denominators stay non-zero (where defined).
Useful identities (we will use repeatedly):
\(\text{cosec }\theta = \dfrac{1}{\sin\theta}\), \(\sec\theta = \dfrac{1}{\cos\theta}\), \(\cot\theta = \dfrac{\cos\theta}{\sin\theta}\), \(\tan\theta = \dfrac{\sin\theta}{\cos\theta}\)
\(\sin^2\theta + \cos^2\theta = 1\)
\(1+\tan^2\theta = \sec^2\theta\), \(1+\cot^2\theta = \text{cosec }^2\theta\)
(i) Prove: \((\text{cosec } \theta - \cot \theta)^2 = \dfrac{1 - \cos \theta}{1 + \cos \theta}\)
LHS \(= (\text{cosec }\theta-\cot\theta)^2\)
\(= \left(\dfrac{1}{\sin\theta}-\dfrac{\cos\theta}{\sin\theta}\right)^2\)
\(= \left(\dfrac{1-\cos\theta}{\sin\theta}\right)^2\)
\(= \dfrac{(1-\cos\theta)^2}{\sin^2\theta}\)
Now use \(\sin^2\theta = 1-\cos^2\theta = (1-\cos\theta)(1+\cos\theta)\).
So,
\(\dfrac{(1-\cos\theta)^2}{(1-\cos\theta)(1+\cos\theta)} = \dfrac{1-\cos\theta}{1+\cos\theta}\)
\(= \textbf{RHS}\). Hence proved.
(ii) Prove: \(\dfrac{\cos A}{1 + \sin A} + \dfrac{1 + \sin A}{\cos A} = 2 \sec A\)
LHS \(= \dfrac{\cos A}{1+\sin A} + \dfrac{1+\sin A}{\cos A}\)
Take LCM \(= \cos A(1+\sin A)\):
\(= \dfrac{\cos^2 A + (1+\sin A)^2}{\cos A(1+\sin A)}\)
Expand numerator:
\(\cos^2 A + (1 + 2\sin A + \sin^2 A)\)
Group \(\sin^2 A + \cos^2 A = 1\):
\(= (\sin^2 A + \cos^2 A) + 1 + 2\sin A = 1 + 1 + 2\sin A = 2(1+\sin A)\)
So,
\(\text{LHS} = \dfrac{2(1+\sin A)}{\cos A(1+\sin A)} = \dfrac{2}{\cos A} = 2\sec A\)
\(= \textbf{RHS}\). Hence proved.
(iii) Prove: \(\dfrac{\tan \theta}{1 - \cot \theta} + \dfrac{\cot \theta}{1 - \tan \theta} = 1 + \sec \theta \text{cosec } \theta\)
LHS \(= \dfrac{\tan\theta}{1-\cot\theta} + \dfrac{\cot\theta}{1-\tan\theta}\)
Write \(\tan\theta=\dfrac{\sin\theta}{\cos\theta}\), \(\cot\theta=\dfrac{\cos\theta}{\sin\theta}\):
First term:
\(\dfrac{\sin\theta/\cos\theta}{1-\cos\theta/\sin\theta} = \dfrac{\sin\theta}{\cos\theta}\cdot\dfrac{\sin\theta}{\sin\theta-\cos\theta} = \dfrac{\sin^2\theta}{\cos\theta(\sin\theta-\cos\theta)}\)
Second term:
\(\dfrac{\cos\theta/\sin\theta}{1-\sin\theta/\cos\theta} = \dfrac{\cos\theta}{\sin\theta}\cdot\dfrac{\cos\theta}{\cos\theta-\sin\theta} = \dfrac{\cos^2\theta}{\sin\theta(\cos\theta-\sin\theta)}\)
Note \((\cos\theta-\sin\theta)=-(\sin\theta-\cos\theta)\), so:
Second term \(= -\dfrac{\cos^2\theta}{\sin\theta(\sin\theta-\cos\theta)}\)
Now add:
\(\text{LHS}=\dfrac{\sin^2\theta}{\cos\theta(\sin\theta-\cos\theta)} - \dfrac{\cos^2\theta}{\sin\theta(\sin\theta-\cos\theta)}\)
Take common denominator \(\sin\theta\cos\theta(\sin\theta-\cos\theta)\):
\(= \dfrac{\sin^3\theta - \cos^3\theta}{\sin\theta\cos\theta(\sin\theta-\cos\theta)}\)
Use \(a^3-b^3=(a-b)(a^2+ab+b^2)\) with \(a=\sin\theta\), \(b=\cos\theta\):
\(\sin^3\theta-\cos^3\theta=(\sin\theta-\cos\theta)(\sin^2\theta+\sin\theta\cos\theta+\cos^2\theta)\)
Cancel \((\sin\theta-\cos\theta)\):
\(\text{LHS}=\dfrac{\sin^2\theta+\sin\theta\cos\theta+\cos^2\theta}{\sin\theta\cos\theta}\)
Replace \(\sin^2\theta+\cos^2\theta=1\):
\(= \dfrac{1+\sin\theta\cos\theta}{\sin\theta\cos\theta} = \dfrac{1}{\sin\theta\cos\theta}+1\)
But \(\dfrac{1}{\sin\theta\cos\theta}=\dfrac{1}{\sin\theta}\cdot\dfrac{1}{\cos\theta}=\text{cosec }\theta\sec\theta\).
So, \(\text{LHS}=1+\sec\theta\text{cosec }\theta=\textbf{RHS}\). Hence proved.
(iv) Prove: \(\dfrac{1 + \sec A}{\sec A} = \dfrac{\sin^2 A}{1 - \cos A}\)
LHS \(= \dfrac{1+\sec A}{\sec A} = \dfrac{1}{\sec A} + \dfrac{\sec A}{\sec A}\)
\(= \cos A + 1 = 1+\cos A\)
RHS \(= \dfrac{\sin^2 A}{1-\cos A}\)
Use \(\sin^2 A = 1-\cos^2 A = (1-\cos A)(1+\cos A)\):
\(\text{RHS}=\dfrac{(1-\cos A)(1+\cos A)}{1-\cos A}=1+\cos A\)
So LHS = RHS. Hence proved.
(v) Prove: \(\dfrac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \text{cosec } A + \cot A\)
LHS \(= \dfrac{1+\cos A-\sin A}{\cos A+\sin A-1}\)
Multiply numerator and denominator by \((1+\cos A+\sin A)\) (a helpful conjugate-type factor):
\(\text{LHS}=\dfrac{(1+\cos A-\sin A)(1+\cos A+\sin A)}{(\cos A+\sin A-1)(1+\cos A+\sin A)}\)
Numerator is of form \((X-Y)(X+Y)=X^2-Y^2\) with \(X=1+\cos A\), \(Y=\sin A\):
Numerator \(=(1+\cos A)^2-\sin^2 A\)
\(=1+2\cos A+\cos^2 A-\sin^2 A\)
\(=1+2\cos A+(\cos^2 A-\sin^2 A)\)
But \(\cos^2 A-\sin^2 A = (\cos^2 A+\sin^2 A)-2\sin^2 A = 1-2\sin^2 A\). So numerator:
\(=1+2\cos A+1-2\sin^2 A = 2+2\cos A-2\sin^2 A\)
\(=2(1+\cos A-\sin^2 A)\)
Now use \(\sin^2 A = 1-\cos^2 A\):
\(1+\cos A-\sin^2 A = 1+\cos A-(1-\cos^2 A)=\cos A+\cos^2 A=\cos A(1+\cos A)\)
So numerator \(=2\cos A(1+\cos A)\).
Denominator:
\((\cos A+\sin A-1)(1+\cos A+\sin A)=(\cos A+\sin A)^2-1\)
\(=\cos^2 A+\sin^2 A+2\sin A\cos A-1\)
\(=1+2\sin A\cos A-1=2\sin A\cos A\)
Therefore,
\(\text{LHS}=\dfrac{2\cos A(1+\cos A)}{2\sin A\cos A}=\dfrac{1+\cos A}{\sin A}=\dfrac{1}{\sin A}+\dfrac{\cos A}{\sin A}\)
\(=\text{cosec } A+\cot A=\textbf{RHS}\). Hence proved.
(vi) Prove: \(\sqrt{\dfrac{1 + \sin A}{1 - \sin A}} = \sec A + \tan A\)
Start with LHS:
\(\sqrt{\dfrac{1+\sin A}{1-\sin A}}\)
Multiply inside by \(\dfrac{1+\sin A}{1+\sin A}\):
\(=\sqrt{\dfrac{(1+\sin A)^2}{1-\sin^2 A}}\)
But \(1-\sin^2 A = \cos^2 A\). So:
\(=\sqrt{\dfrac{(1+\sin A)^2}{\cos^2 A}}\)
For acute angles, \(\cos A>0\), so:
\(=\dfrac{1+\sin A}{\cos A}=\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}=\sec A+\tan A\)
\(=\textbf{RHS}\). Hence proved.
(vii) Prove: \(\dfrac{\sin \theta - 2 \sin^3 \theta}{2 \cos^3 \theta - \cos \theta} = \tan \theta\)
LHS \(=\dfrac{\sin\theta-2\sin^3\theta}{2\cos^3\theta-\cos\theta}\)
Factor numerator and denominator:
Numerator \(=\sin\theta(1-2\sin^2\theta)\)
Denominator \(=\cos\theta(2\cos^2\theta-1)\)
So,
\(\text{LHS}=\dfrac{\sin\theta}{\cos\theta}\cdot\dfrac{1-2\sin^2\theta}{2\cos^2\theta-1}\)
Now use \(\sin^2\theta=1-\cos^2\theta\):
\(1-2\sin^2\theta=1-2(1-\cos^2\theta)=1-2+2\cos^2\theta=2\cos^2\theta-1\)
So the fraction becomes 1, hence:
\(\text{LHS}=\dfrac{\sin\theta}{\cos\theta}=\tan\theta=\textbf{RHS}\). Hence proved.
(viii) Prove: \((\sin A + \text{cosec } A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A\)
LHS \(= (\sin A + \text{cosec } A)^2 + (\cos A + \sec A)^2\)
Expanding both squares:
\((\sin A + \text{cosec } A)^2 = \sin^2 A + \text{cosec }^2 A + 2\sin A\text{cosec } A\)
Since \(\sin A\text{cosec } A = 1\), this becomes:
\((\sin A + \text{cosec } A)^2 = \sin^2 A + \text{cosec }^2 A + 2\)
\((\cos A + \sec A)^2 = \cos^2 A + \sec^2 A + 2\cos A\sec A\)
Since \(\cos A\sec A = 1\), we get:
\((\cos A + \sec A)^2 = \cos^2 A + \sec^2 A + 2\)
Adding both expressions:
\(\text{LHS} = (\sin^2 A + \text{cosec }^2 A + 2) + (\cos^2 A + \sec^2 A + 2)\)
\(= (\sin^2 A + \cos^2 A) + (\sec^2 A + \text{cosec }^2 A) + 4\)
Using identities \(\sin^2 A + \cos^2 A = 1\), \(\sec^2 A = 1 + \tan^2 A\), and \(\text{cosec }^2 A = 1 + \cot^2 A\):
\(\text{LHS} = 1 + (1 + \tan^2 A) + (1 + \cot^2 A) + 4\)
\(= 7 + \tan^2 A + \cot^2 A\)
Hence proved:
\((\sin A + \text{cosec } A)^2 + (\cos A + \sec A)^2 = 7 + \tan^2 A + \cot^2 A\)
(ix) Prove: \((\text{cosec } A - \sin A)(\sec A - \cos A) = \dfrac{1}{\tan A + \cot A}\)
LHS \(=(\text{cosec } A-\sin A)(\sec A-\cos A)\)
Write in \(\sin,\cos\):
\(=\left(\dfrac{1}{\sin A}-\sin A\right)\left(\dfrac{1}{\cos A}-\cos A\right)\)
\(=\left(\dfrac{1-\sin^2 A}{\sin A}\right)\left(\dfrac{1-\cos^2 A}{\cos A}\right)\)
Use \(1-\sin^2 A=\cos^2 A\) and \(1-\cos^2 A=\sin^2 A\):
\(=\left(\dfrac{\cos^2 A}{\sin A}\right)\left(\dfrac{\sin^2 A}{\cos A}\right)=\sin A\cos A\)
RHS \(=\dfrac{1}{\tan A+\cot A}=\dfrac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}\)
\(=\dfrac{1}{\frac{\sin^2 A+\cos^2 A}{\sin A\cos A}}=\dfrac{1}{\frac{1}{\sin A\cos A}}=\sin A\cos A\)
So LHS = RHS. Hence proved.
(x) Prove: \(\dfrac{1 + \tan^2 A}{1 + \cot^2 A} = \left( \dfrac{1 - \tan A}{1 - \cot A} \right)^2 = \tan^2 A\)
Part 1: \(\dfrac{1+\tan^2 A}{1+\cot^2 A}\)
Use \(1+\tan^2 A=\sec^2 A\) and \(1+\cot^2 A=\text{cosec }^2 A\):
\(=\dfrac{\sec^2 A}{\text{cosec }^2 A}=\dfrac{\frac{1}{\cos^2 A}}{\frac{1}{\sin^2 A}}=\dfrac{\sin^2 A}{\cos^2 A}=\tan^2 A\)
Part 2: \(\left(\dfrac{1-\tan A}{1-\cot A}\right)^2\)
Inside the bracket, write \(\cot A=\dfrac{1}{\tan A}\). Let \(t=\tan A\) (\(t\neq 0\)):
\(\dfrac{1-t}{1-\frac{1}{t}}=\dfrac{1-t}{\frac{t-1}{t}}=(1-t)\cdot\dfrac{t}{t-1}\)
But \(1-t=-(t-1)\), so:
\(=( -(t-1))\cdot\dfrac{t}{t-1}=-t\)
Now square it:
\(\left(-t\right)^2=t^2=\tan^2 A\)
So both expressions equal \(\tan^2 A\). Hence proved.
Final Note: In proofs, always keep denominators non-zero and use identities like \(\sin^2+\cos^2=1\), \(1+\tan^2=\sec^2\), and \(1+\cot^2=\text{cosec }^2\) to simplify quickly.