The sum of the first terms of an AP is given as:
\(S_1 = 3,\ S_2 = 4\). Find:
\(a_2 = S_2 - S_1\), \(S_3\), \(a_3 = S_3 - S_2\), \(a_{10} = S_{10} - S_9\), and \(a_n = S_n - S_{n-1}\).
\(S_1 = 3,\ S_2 = 4\)
\(a_2 = S_2 - S_1 = 1\)
\(S_3 = 3\)
\(a_3 = S_3 - S_2 = -1\)
\(a_{10} = S_{10} - S_9 = -15\)
\(a_n = S_n - S_{n-1} = 5 - 2n\)
Key facts:
• In any sequence, the nth term can be found from sums using: \(a_n = S_n - S_{n-1}\).
• For an AP, the terms differ by a constant common difference \(d\).
We know:
\[S_1 = a_1 = 3\]
So, \(a_1 = 3\).
Also,
\[S_2 = a_1 + a_2 = 4\]
So,
\[a_2 = S_2 - S_1 = 4 - 3 = 1\]
Hence, \(a_1 = 3\), \(a_2 = 1\).
The common difference is:
\[d = a_2 - a_1 = 1 - 3 = -2\]
For an AP,
\[a_n = a_1 + (n - 1)d\]
Substitute \(a_1 = 3\) and \(d = -2\):
\[a_n = 3 + (n - 1)(-2) = 3 - 2n + 2 = 5 - 2n\]
So,
\[a_n = 5 - 2n\]
This also matches the required form \(a_n = S_n - S_{n-1}\).
First find \(a_3\) using \(a_n = 5 - 2n\):
\[a_3 = 5 - 2 \cdot 3 = 5 - 6 = -1\]
Now,
\[S_3 = a_1 + a_2 + a_3 = 3 + 1 + (-1) = 3\]
Check with difference:
\[a_3 = S_3 - S_2 = 3 - 4 = -1\]
which agrees with our value.
Using the general term:
\[a_{10} = 5 - 2 \cdot 10 = 5 - 20 = -15\]
By definition, \(a_{10} = S_{10} - S_9\), so:
\[S_{10} - S_9 = -15\]
• \(a_2 = S_2 - S_1 = 1\)
• \(S_3 = 3\)
• \(a_3 = S_3 - S_2 = -1\)
• \(a_{10} = S_{10} - S_9 = -15\)
• General term: \(a_n = S_n - S_{n-1} = 5 - 2n\).