In an AP:
(i) \(n = 16,\ S_n = 440\)
(ii) \(d = \dfrac{7}{3},\ S_{13} = 273\)
(iii) \(a = 4,\ S_{12} = 246\)
(iv) \(d = -1,\ a_{10} = 8\)
(v) \(a = -\dfrac{35}{3},\ a_9 = \dfrac{85}{3}\)
(vi) \(n = 5,\ a_n = 34\)
(vii) \(n = 6,\ d = \dfrac{54}{5}\)
(viii) \(n = 7,\ a = -8\)
(ix) \(d = 6\)
(x) \(a = 4\)
Formulas used for an AP:
nth term: \(a_n = a + (n - 1)d\)
Sum of first n terms: \(S_n = \dfrac{n}{2}[2a + (n - 1)d] = \dfrac{n}{2}(a + l)\), where \(l = a_n\) is the nth term.
Use \(a_n = a + (n - 1)d\):
\[50 = 5 + (n - 1)3\]
\[50 - 5 = 3(n - 1) \Rightarrow 45 = 3(n - 1)\]
\[n - 1 = 15 \Rightarrow n = 16\]
Now \(S_n = \dfrac{n}{2}[2a + (n - 1)d] = \dfrac{16}{2}[2\cdot 5 + 15\cdot 3]\)
\[S_{16} = 8(10 + 45) = 8 \cdot 55 = 440\]
\[a_{13} = a + 12d = 35\]
\[7 + 12d = 35 \Rightarrow 12d = 28 \Rightarrow d = \dfrac{7}{3}\]
Now \(S_{13} = \dfrac{13}{2}[2a + 12d] = \dfrac{13}{2}[14 + 12 \cdot \dfrac{7}{3}]\)
\[14 + 28 = 42 \Rightarrow S_{13} = \dfrac{13}{2} \cdot 42 = 13 \cdot 21 = 273\]
\[a_{12} = a + 11d = 37\]
\[a + 11\cdot 3 = 37 \Rightarrow a + 33 = 37 \Rightarrow a = 4\]
\[S_{12} = \dfrac{12}{2}[2a + 11d] = 6[2\cdot 4 + 11\cdot 3] = 6(8 + 33) = 6 \cdot 41 = 246\]
From \(a_3 = a + 2d = 15\), we get \(a = 15 - 2d\).
Also, \(S_{10} = \dfrac{10}{2}[2a + 9d] = 5(2a + 9d) = 125\Rightarrow 2a + 9d = 25\).
Substitute \(a = 15 - 2d\):
\[2(15 - 2d) + 9d = 25 \Rightarrow 30 - 4d + 9d = 25\]
\[30 + 5d = 25 \Rightarrow 5d = -5 \Rightarrow d = -1\]
Then \(a = 15 - 2(-1) = 17\).
10th term: \(a_{10} = a + 9d = 17 + 9(-1) = 8\).
\[S_9 = \dfrac{9}{2}[2a + 8d] = 75\]
\[\Rightarrow 9(2a + 40) = 150 \Rightarrow 2a + 40 = \dfrac{150}{9} = \dfrac{50}{3}\]
\[2a = \dfrac{50}{3} - 40 = \dfrac{50}{3} - \dfrac{120}{3} = -\dfrac{70}{3}\Rightarrow a = -\dfrac{35}{3}\]
\[a_9 = a + 8d = -\dfrac{35}{3} + 8\cdot 5 = -\dfrac{35}{3} + \dfrac{120}{3} = \dfrac{85}{3}\]
\[S_n = \dfrac{n}{2}[2a + (n - 1)d] = \dfrac{n}{2}[4 + 8(n - 1)]\]
\[= \dfrac{n}{2}(8n - 4) = 2n(2n - 1) = 90\]
So, \[4n^2 - 2n - 90 = 0 \Rightarrow 2n^2 - n - 45 = 0\]
Discriminant: \(1 + 4 \cdot 2 \cdot 45 = 1 + 360 = 361 = 19^2\).
\[n = \dfrac{1 \pm 19}{4}\Rightarrow n = 5\; (\text{positive integer})\]
Then \(a_n = a + (n - 1)d = 2 + 4 \cdot 8 = 34\).
From \(S_n = \dfrac{n}{2}(a + l)\):
\[210 = \dfrac{n}{2}(8 + 62) = \dfrac{n}{2} \cdot 70 = 35n\]
\[35n = 210 \Rightarrow n = 6\]
Now \(a_n = a + (n - 1)d = 62\Rightarrow 8 + 5d = 62\Rightarrow 5d = 54\Rightarrow d = \dfrac{54}{5}\).
Use \(S_n = \dfrac{n}{2}(a + l)\):
\[-14 = \dfrac{n}{2}(a + 4) \Rightarrow n(a + 4) = -28\]
Also, \(a_n = a + (n - 1)2 = 4\Rightarrow a = 4 - 2(n - 1) = 6 - 2n\).
Then \(a + 4 = 6 - 2n + 4 = 10 - 2n\), so:
\[n(10 - 2n) = -28\Rightarrow 2n(5 - n) = -28\Rightarrow n(5 - n) = -14\]
\[-n^2 + 5n + 14 = 0 \Rightarrow n^2 - 5n - 14 = 0\]
Discriminant: \(25 + 56 = 81 = 9^2\).
\[n = \dfrac{5 \pm 9}{2}\Rightarrow n = 7\; (\text{valid positive})\]
Then \(a = 6 - 2n = 6 - 14 = -8\).
\[S_8 = \dfrac{8}{2}[2a + 7d] = 4(2 \cdot 3 + 7d) = 192\]
\[4(6 + 7d) = 192 \Rightarrow 6 + 7d = 48 \Rightarrow 7d = 42 \Rightarrow d = 6\]
Use \(S_n = \dfrac{n}{2}(a + l)\):
\[144 = \dfrac{9}{2}(a + 28)\]
\[288 = 9(a + 28) \Rightarrow a + 28 = 32 \Rightarrow a = 4\]
Summary: Each part uses combinations of the AP nth-term and sum formulas, then solves simple linear or quadratic equations to find the required unknowns.