NCERT Exemplar Solutions
Class 6 - Mathematics - Unit 2: Geometry - Multiple Choice Questions
Question 12

Question.  12

If the sum of two angles is equal to an obtuse angle, then which of the following is not possible?

(A)

One obtuse angle and one acute angle

(B)

One right angle and one acute angle

(C)

Two acute angles

(D)

Two right angles

Detailed Answer with Explanation:

Key facts

  • Acute angle: \(0^circ < \theta < 90^circ\).
  • Right angle: \(\theta = 90^\circ\).
  • Obtuse angle: \(90^\circ < \theta < 180^\circ\).
  • Straight angle: \(\theta = 180^\circ\).

Check each option

  1. One obtuse + one acute

    Choose examples: \(100^\circ\) (obtuse) and \(20^\circ\) (acute).

    Sum: \(100^\circ + 20^\circ = 120^\circ\).

    \(120^\circ\) is obtuse. So this is possible.

  2. One right + one acute

    Right angle: \(90^\circ\). Let acute be \(\alpha\) with \(0^\circ < \alpha < 90^\circ\).

    Sum: \(90^\circ + \alpha\).

    Since \(0^\circ < \alpha < 90^\circ\), we get \(90^\circ < 90^\circ + \alpha < 180^\circ\).

    The sum is obtuse. So this is possible.

  3. Two acute angles

    Let the angles be \(\alpha\) and \(\beta\) with \(0^\circ < \alpha,\beta < 90^\circ\).

    Pick \(\alpha = 50^\circ\), \(\beta = 50^\circ\).

    Sum: \(50^\circ + 50^\circ = 100^\circ\).

    \(100^\circ\) is obtuse. So this is possible.

  4. Two right angles

    Sum: \(90^\circ + 90^\circ = 180^\circ\).

    \(180^\circ\) is a straight angle, not obtuse.

    So this is not possible if the sum must be obtuse.

Answer: Option D — Two right angles.

NCERT Exemplar Solutions Class 6 – Mathematics – Unit 2: Geometry – Multiple Choice Questions | Detailed Answers