If the sum of two angles is equal to an obtuse angle, then which of the following is not possible?
One obtuse angle and one acute angle
One right angle and one acute angle
Two acute angles
Two right angles
Key facts
Check each option
One obtuse + one acute
Choose examples: \(100^\circ\) (obtuse) and \(20^\circ\) (acute).
Sum: \(100^\circ + 20^\circ = 120^\circ\).
\(120^\circ\) is obtuse. So this is possible.
One right + one acute
Right angle: \(90^\circ\). Let acute be \(\alpha\) with \(0^\circ < \alpha < 90^\circ\).
Sum: \(90^\circ + \alpha\).
Since \(0^\circ < \alpha < 90^\circ\), we get \(90^\circ < 90^\circ + \alpha < 180^\circ\).
The sum is obtuse. So this is possible.
Two acute angles
Let the angles be \(\alpha\) and \(\beta\) with \(0^\circ < \alpha,\beta < 90^\circ\).
Pick \(\alpha = 50^\circ\), \(\beta = 50^\circ\).
Sum: \(50^\circ + 50^\circ = 100^\circ\).
\(100^\circ\) is obtuse. So this is possible.
Two right angles
Sum: \(90^\circ + 90^\circ = 180^\circ\).
\(180^\circ\) is a straight angle, not obtuse.
So this is not possible if the sum must be obtuse.
Answer: Option D — Two right angles.