\((–25)\times[6+4]\) is not same as
\((–25)\times 10\)
\((–25)\times 6 + (–25)\times 4\)
\((–25)\times 6 \times 4\)
–250
Idea: First find the value of \((-25)\times[6+4]\). Then compare with each option.
Step 1: Add inside the bracket
(6+4=10)
Step 2: Multiply
((-25) imes 10=-250)
So the expression equals -250. Now check each option:
Option (a):
((-25) imes 10=-250)
This is the same.
Option (b): Use the distributive property.
((-25) imes 6 + (-25) imes 4)
((-25) imes 6=-150)
((-25) imes 4=-100)
(-150 + (-100) = -250)
This is also the same.
Option (c):
((-25) imes 6 imes 4)
((-25) imes 6=-150)
(-150 imes 4=-600)
-600 is not equal to -250. So this is not the same.
Option (d):
(-250)
This is exactly the value we got, so it is the same.
Answer: Option c is not the same.