NCERT Exemplar Solutions
Class 7 - Mathematics - Unit 6: Triangles
Problems and Solutions

In Questions 107 to 158, solve each problem and provide the reasoning as required.

Question. 107

The measure of three angles of a triangle are in the ratio 5 : 3 : 1. Find the measures of these angles.

Answer:

The measures of the angles are 100°, 60°, 20°.

Open

Question. 108

In Fig. 6.30, find the value of x.

Answer:

x = 35°

Open

Question. 109

In Fig. 6.31(i) and (ii), find the values of a, b and c.

Answer:

(i) a = 20°, b = 130°, c = 50°

(ii) a = 65°, b = 115°, c = 25°

Open

Question. 110

In triangle XYZ, the measure of angle X is 30° greater than the measure of angle Y and angle Z is a right angle. Find the measure of ∠Y.

Answer:

∠Y = 30°

Open

Question. 111

In a triangle ABC, the measure of angle A is 40° less than the measure of angle B and 50° less than that of angle C. Find the measure of ∠A.

Answer:

∠A = 30°

Open

Question. 112

I have three sides. One of my angle measures 15°. Another has a measure of 60°. What kind of a polygon am I? If I am a triangle, then what kind of triangle am I?

Answer:

I am a Triangle, specifically an Obtuse-angled triangle.

Open

Question. 113

Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?

Answer:

10 km

Open

Question. 114

Jayanti takes shortest route to her home by walking diagonally across a rectangular park. The park measures 60 metres × 80 metres. How much shorter is the route across the park than the route around its edges?

Answer:

40 m

Open

Question. 115

In ΔPQR of Fig. 6.32, PQ = PR. Find the measures of ∠Q and ∠R.

Answer:

∠Q = 75°, ∠R = 75°

Open

Question. 116

In Fig. 6.33, find the measures of ∠x and ∠y.

Answer:

∠x = 75°, ∠y = 135°

Open

Question. 117

In Fig. 6.34, find the measures of ∠PON and ∠NPO.

Answer:

∠PON = 90°, ∠NPO = 20°

Open

Question. 118

In Fig. 6.35, QP ∥ RT. Find the values of x and y.

Answer:

x = 70°, y = 80°

Open

Question. 119

Find the measure of ∠A in Fig. 6.36.

Answer:

∠A = 50°

Open

Question. 120

In a right-angled triangle if an angle measures 35°, then find the measure of the third angle.

Answer:

55°

Open

Question. 121

Each of the two equal angles of an isosceles triangle is four times the third angle. Find the angles of the triangle.

Answer:

20°, 80°, 80°

Open

Question. 122

The angles of a triangle are in the ratio 2 : 3 : 5. Find the angles.

Answer:

36°, 54°, 90°

Open

Question. 123

If the sides of a triangle are produced in an order, show that the sum of the exterior angles so formed is 360°.

Answer:

360°

Open

Question. 124

In ΔABC, if ∠A = ∠C, and exterior angle ABX = 140°, then find the angles of the triangle.

Answer:

∠B = 40°, ∠A = 70°, ∠C = 70°

Open

Question. 125

Find the values of x and y in Fig. 6.37.

Answer:

x = 80°, y = 75°

Open

Question. 126

Find the value of x in Fig. 6.38.

Answer:

x = 20°

Open

Question. 127

The angles of a triangle are arranged in descending order of their magnitudes. If the difference between two consecutive angles is 10°, find the three angles.

Answer:

70°, 60°, 50°

Open

Question. 128

In ΔABC, DE ∥ BC (Fig. 6.39). Find the values of x, y and z.

Answer:

x = 30°, y = 40°, z = 110°

Open

Question. 129

In Fig. 6.40, find the values of x, y and z.

Answer:

x = 60°, y = 120°, z = 30°

Open

Question. 130

If one angle of a triangle is 60° and the other two angles are in the ratio 1 : 2, find the angles.

Answer:

40° and 80°

Open

Question. 131

In ΔPQR, if 3∠P = 4∠Q = 6∠R, calculate the angles of the triangle.

Answer:

∠P = 80°, ∠Q = 60°, ∠R = 40°

Open

Question. 132

In ΔDEF, ∠D = 60°, ∠E = 70° and the bisectors of ∠E and ∠F meet at O. Find (i) ∠F (ii) ∠EOF.

Answer:

(i) ∠F = 50°, (ii) ∠EOF = 120°

Open

Question. 133

In Fig. 6.41, ΔPQR is right-angled at P. U and T are the points on line QRF. If QP ∥ ST and US ∥ RP, find ∠S.

Answer:

∠S = 90°

Open

Question. 134

In each of the given pairs of triangles of Fig. 6.42, applying only ASA congruence criterion, determine which triangles are congruent. Also, write the congruent triangles in symbolic form.

Answer:

(a) Not possible

(b) ΔABD ≅ ΔCDB

(c) ΔXYZ ≅ ΔLMN

(d) Not possible

(e) ΔMNO ≅ ΔPON

(f) ΔAOD ≅ ΔBOC

Open

Question. 135

In each of the given pairs of triangles of Fig. 6.43, using only RHS congruence criterion, determine which pairs of triangles are congruent. In case of congruence, write the result in symbolic form:

Answer:

(a) ΔABD ≅ ΔACD

(b) ΔXYZ ≅ ΔUZY

(c) ΔACE ≅ ΔBDE

(d) ΔABC ≅ ΔCDE

(e) Not possible

(f) ΔLOM ≅ ΔCDE

Open

Question. 136

In Fig. 6.44, if RP = RQ, find the value of x.

Answer:

x = 50°

Open

Question. 137

In Fig. 6.45, if ST = SU, then find the values of x and y.

Answer:

x = 129°, y = 51°

Open

Question. 138

Check whether the following measures (in cm) can be the sides of a right-angled triangle or not: 1.5, 3.6, 3.9

Answer:

Yes

Open

Question. 139

Height of a pole is 8 m. Find the length of rope tied with its top from a point on the ground at a distance of 6 m from its bottom.

Answer:

10 m (1000 cm)

Open

Question. 140

In Fig. 6.46, if y is five times x, find the value of z.

Answer:

z = 160°

Open

Question. 141

The lengths of two sides of an isosceles triangle are 9 cm and 20 cm. What is the perimeter of the triangle? Give reason.

Answer:

49 cm

Open

Question. 142

Without drawing the triangles write all six pairs of equal measures in each of the following pairs of congruent triangles.

Answer:

(a) ∠S = ∠D, ∠T = ∠E, ∠U = ∠F, ST = DE, TU = EF, SU = DF

(b) ∠A = ∠L, ∠B = ∠M, ∠C = ∠N, AB = LM, BC = MN, AC = LN

(c) ∠Y = ∠P, ∠Z = ∠Q, ∠X = ∠R, YZ = PQ, ZX = QR, XY = PR

(d) ∠X = ∠M, ∠Y = ∠L, ∠Z = ∠N, XY = ML, YZ = LN, XZ = MN

Open

Question. 143

In the following pairs of triangles of Fig. 6.47, the lengths of the sides are indicated along the sides. By applying SSS congruence criterion, determine which triangles are congruent. If congruent, write the results in symbolic form.

Answer:

(a) ΔABC ≅ ΔNLM

(b) ΔLMN ≅ ΔGHI

(c) ΔLMN ≅ ΔLON

(d) ΔZYX ≅ ΔWXY

(e) ΔAOB ≅ ΔDOE

(f) ΔSTU ≅ ΔSVU

(g) ΔPSR ≅ ΔRQP

(h) ΔSTU ≅ ΔPQR

Open

Question. 144

ABC is an isosceles triangle with AB = AC and D is the mid-point of base BC (Fig. 6.48).

(a) State three pairs of equal parts in the triangles ABD and ACD.

(b) Is ΔABD ≅ ΔACD? If so why?

Answer:

(a) AB = AC, BD = CD, AD = AD

(b) Yes, by SSS criterion

Open

Question. 145

In Fig. 6.49, it is given that LM = ON and NL = MO. (a) State the three pairs of equal parts in the triangles NOM and MLN. (b) Is ΔNOM ≅ ΔMLN? Give reason.

Answer:

(a) LM = ON, LN = OM, MN = NM

(b) Yes, by SSS

Open

Question. 146

Triangles DEF and LMN are both isosceles with DE = DF and LM = LN, respectively. If DE = LM and EF = MN, then, are the two triangles congruent? Which condition do you use? If ∠E = 40°, what is the measure of ∠N?

Answer:

Yes, congruent by SSS. ∠N = 40°

Open

Question. 147

If ΔPQR and ΔSQR are both isosceles triangles on a common base QR such that P and S lie on the same side of QR, are triangles PSQ and PSR congruent? Which condition do you use?

Answer:

Yes, congruent by SSS

Open

Question. 148

In Fig. 6.50, which pairs of triangles are congruent by SAS congruence criterion? If congruent, write the congruence of the two triangles in symbolic form.

Answer:

(i) ΔPQR ≅ ΔTUS

(ii) Not congruent

(iii) ΔBCD ≅ ΔBAE

(iv) ΔSTU ≅ ΔXZY

(v) ΔDOF ≅ ΔHOC

(vi) Not congruent

(vii) ΔPSQ ≅ ΔRQS

(viii) ΔLMN ≅ ΔOMN

Open

Question. 149

State which of the following pairs of triangles are congruent. If yes, write them in symbolic form.

Answer:

(i) ΔPQR ≅ ΔSTU

(ii) Not congruent

Open

Question. 150

In Fig. 6.51, PQ = PS and ∠1 = ∠2.

(i) Is ΔPQR ≅ ΔPSR? Give reasons.

(ii) Is QR = SR? Give reasons.

Answer:

(i) Yes, by SAS

(ii) Yes, by CPCT

Open

Question. 151

In Fig. 6.52, DE = IH, EG = FI and ∠E = ∠I. Is ΔDEF ≅ ΔHIG? If yes, by which congruence criterion?

Answer:

Yes, by SAS

Open

Question. 152

In Fig. 6.53, ∠1 = ∠2 and ∠3 = ∠4. (i) Is ΔADC ≅ ΔABC? Why? (ii) Show that AD = AB and CD = CB.

Answer:

(i) Yes, by ASA

(ii) Yes, by CPCT: AD = AB and CD = CB

Open

Question. 153

Observe Fig. 6.54 and state the three pairs of equal parts in triangles ABC and DBC.

(i) Is ΔABC ≅ ΔDCB? Why?

(ii) Is AB = DC? Why?

(iii) Is AC = DB? Why?

Answer:

(i) Yes, by ASA

(ii) Yes, by CPCT

(iii) Yes, by CPCT

Open

Question. 154

In Fig. 6.55, QS ⟂ PR, RT ⟂ PQ and QS = RT.

(i) Is ΔQSR ≅ ΔRTQ? Give reasons.

(ii) Is ∠PQR = ∠PRQ? Give reasons.

Answer:

(i) Yes, by RHS

(ii) Yes, by CPCT

Open

Question. 155

Points A and B are on the opposite edges of a pond as shown in Fig. 6.56. To find the distance between the two points, the surveyor makes a right-angled triangle as shown. Find the distance AB.

Answer:

38 m

Open

Question. 156

Two poles of 10 m and 15 m stand upright on a plane ground. If the distance between the tops is 13 m, find the distance between their feet.

Answer:

12 m

Open

Question. 157

The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. (a) Find the length of the ladder. (b) If the ladder is shifted such that its foot is 8 m away, to what height does its top reach?

Answer:

(a) 10 m (b) 6 m

Open

Question. 158

In Fig. 6.57, state the three pairs of equal parts in ΔABC and ΔEOD. Is ΔABC ≅ ΔEOD? Why?

Answer:

Yes, by RHS. Equal parts: AB = EO, ∠ABC = ∠EOD = 90°, AC = DE

Open

NCERT Exemplar Solutions Class 7 – Mathematics – Unit 6: Triangles – Problems and Solutions | Detailed Answers