NCERT Solutions
Class 10 - Mathematics - Chapter 4: QUADRATIC EQUATIONS - Exercise 4.3
Question 1

Question. 1

Find the nature of the roots of the following quadratic equations. If the real roots exist, find them:

(i) \(2x^2 - 3x + 5 = 0\)

(ii) \(3x^2 - 4\sqrt{3}x + 4 = 0\)

(iii) \(2x^2 - 6x + 3 = 0\)

Answer:

(i) Real roots do not exist.

(ii) Equal roots: \(\dfrac{2}{\sqrt{3}}, \dfrac{2}{\sqrt{3}}\)

(iii) Distinct roots: \(\dfrac{3 \pm \sqrt{3}}{2}\)

Detailed Answer with Explanation:

Key idea: For a quadratic equation \(ax^2 + bx + c = 0\), the discriminant is \(D = b^2 - 4ac\).

• If \(D > 0\): two distinct real roots.
• If \(D = 0\): two equal real roots.
• If \(D < 0\): no real roots (roots are non-real complex).

(i) \(2x^2 - 3x + 5 = 0\)

Step 1: Identify coefficients.

Here, \(a = 2,\ b = -3,\ c = 5\).

Step 2: Compute the discriminant.

\[D = b^2 - 4ac = (-3)^2 - 4(2)(5)\]

\[D = 9 - 40 = -31\]

Step 3: Interpret the discriminant.

Since \(D = -31 < 0\), the equation has no real roots. Its roots are non-real complex.

Conclusion for (i): Real roots do not exist.

(ii) \(3x^2 - 4\sqrt{3}x + 4 = 0\)

Step 1: Identify coefficients.

Here, \(a = 3,\ b = -4\sqrt{3},\ c = 4\).

Step 2: Compute the discriminant.

\[D = b^2 - 4ac = (-4\sqrt{3})^2 - 4(3)(4)\]

First, \((-4\sqrt{3})^2 = 16 \cdot 3 = 48\).

So,

\[D = 48 - 4 \cdot 3 \cdot 4 = 48 - 48 = 0\]

Step 3: Interpret the discriminant.

Since \(D = 0\), the equation has two equal real roots.

Step 4: Find the equal root. For \(D = 0\), the root is

\[x = \dfrac{-b}{2a}\]

Substitute \(a = 3\) and \(b = -4\sqrt{3}\):

\[x = \dfrac{-(-4\sqrt{3})}{2 \cdot 3} = \dfrac{4\sqrt{3}}{6} = \dfrac{2}{\sqrt{3}}\]

So both roots are the same.

Conclusion for (ii): Equal real roots \(x = \dfrac{2}{\sqrt{3}}, \dfrac{2}{\sqrt{3}}\).

(iii) \(2x^2 - 6x + 3 = 0\)

Step 1: Identify coefficients.

Here, \(a = 2,\ b = -6,\ c = 3\).

Step 2: Compute the discriminant.

\[D = b^2 - 4ac = (-6)^2 - 4(2)(3)\]

\[D = 36 - 24 = 12\]

Step 3: Interpret the discriminant.

Since \(D = 12 > 0\), the equation has two distinct real roots.

Step 4: Use the quadratic formula.

\[x = \dfrac{-b \pm \sqrt{D}}{2a} = \dfrac{-(-6) \pm \sqrt{12}}{2 \cdot 2}\]

\[x = \dfrac{6 \pm \sqrt{12}}{4}\]

Simplify \(\sqrt{12}\):

\[\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}\]

So,

\[x = \dfrac{6 \pm 2\sqrt{3}}{4} = \dfrac{6}{4} \pm \dfrac{2\sqrt{3}}{4} = \dfrac{3}{2} \pm \dfrac{\sqrt{3}}{2}\]

Combine over a common denominator:

\[x = \dfrac{3 \pm \sqrt{3}}{2}\]

Conclusion for (iii): Two distinct real roots: \(x = \dfrac{3 + \sqrt{3}}{2}\) and \(x = \dfrac{3 - \sqrt{3}}{2}\).

NCERT Solutions – Chapter-wise Questions & Answers