NCERT Solutions
Class 10 - Mathematics - Chapter 8: INTRODUCTION TO TRIGONOMETRY - Exercise 8.2
Question 3

Question. 3

If \(\tan (A + B) = \sqrt{3}\) and \(\tan (A - B) = \dfrac{1}{\sqrt{3}}\); \(0^\circ < A + B \leq 90^\circ\), \(A > B\), find \(A\) and \(B\).

Answer:

\(\angle A = 45^\circ,\ \angle B = 15^\circ\)

Video Explanation:

Detailed Answer with Explanation:

Given: \(\tan(A+B)=\sqrt{3}\) and \(\tan(A-B)=\dfrac{1}{\sqrt{3}}\), with \(0^\circ<A+B\le 90^\circ\) and \(A>B\).

To find: \(A\) and \(B\).

Step 1: Convert each tangent value to its standard angle

We use the standard values:

\(\tan 60^\circ = \sqrt{3}\) and \(\tan 30^\circ = \dfrac{1}{\sqrt{3}}\).

So we can write:

\(\tan(A+B)=\tan 60^\circ\)

\(\tan(A-B)=\tan 30^\circ\)

Step 2: Use the given range to fix the exact angles

Since \(0^\circ<A+B\le 90^\circ\), the angle \((A+B)\) must be an acute angle.

In the acute range, \(\tan\theta\) has only one standard match, so:

\(A+B = 60^\circ\).

Also, since \(A>B\), we have \(A-B>0\). The standard acute angle for \(\tan\theta = \dfrac{1}{\sqrt{3}}\) is \(30^\circ\), so:

\(A-B = 30^\circ\).

Student Note: Without the range information, \(\tan\theta\) could repeat every \(180^\circ\). The conditions given in the question help us choose the correct (acute) angles.

Step 3: Solve the two equations

We now have a pair of simple linear equations:

(1) \(A+B=60^\circ\)

(2) \(A-B=30^\circ\)

Add (1) and (2):

\((A+B)+(A-B)=60^\circ+30^\circ\)

\(2A = 90^\circ\)

\(A = 45^\circ\)

Now substitute \(A=45^\circ\) in (1):

\(45^\circ + B = 60^\circ\Rightarrow B=15^\circ\).

Final Answer: \(A=45^\circ\) and \(B=15^\circ\).

Quick Check:

\(A+B=45^\circ+15^\circ=60^\circ\Rightarrow \tan(A+B)=\tan 60^\circ=\sqrt{3}\) ✓

\(A-B=45^\circ-15^\circ=30^\circ\Rightarrow \tan(A-B)=\tan 30^\circ=\dfrac{1}{\sqrt{3}}\) ✓

NCERT Solutions – Chapter-wise Questions & Answers