NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 4: Quadatric Equation - Exercise 4.4
Question 1

Question. 1

Find whether the following equations have real roots. If real roots exist, find them.

(i) \(8x^2 + 2x - 3 = 0\)

(ii) \(-2x^2 + 3x + 2 = 0\)

(iii) \(5x^2 - 2x - 10 = 0\)

(iv) \(\dfrac{1}{2x-3} + \dfrac{1}{x-5} = 1\),   \(x \neq \dfrac{3}{2},\; 5\)

(v) \(x^2 + 5\sqrt{5}\,x - 70 = 0\)

Answer:

(i) Real and distinct: \(x = -\dfrac{3}{4},\; \dfrac{1}{2}\).

(ii) Real and distinct: \(x = -\dfrac{1}{2},\; 2\).

(iii) Real and distinct: \(x = \dfrac{1 - \sqrt{51}}{5},\; \dfrac{1 + \sqrt{51}}{5}\).

(iv) Real and distinct: \(x = 4 \pm \dfrac{3\sqrt{2}}{2}\).

(v) Real and distinct: \(x = -7\sqrt{5},\; 2\sqrt{5}\).

Detailed Answer with Explanation:

General idea: For a quadratic equation of the form \(ax^2 + bx + c = 0\), we use the discriminant \(D = b^2 - 4ac\). - If \(D > 0\), we get two real and different roots. - If \(D = 0\), we get two equal real roots. - If \(D < 0\), we get no real roots.

(i) \(8x^2 + 2x - 3 = 0\)

Here, \(a = 8, b = 2, c = -3\).

Step 1: Find discriminant. \(D = b^2 - 4ac = 2^2 - 4(8)(-3) = 4 + 96 = 100\).

Step 2: Since \(D > 0\), there are 2 real and different roots.

Step 3: Use formula \(x = \dfrac{-b \pm \sqrt{D}}{2a}\).

\(x = \dfrac{-2 \pm 10}{16}\).

So, \(x = -\tfrac{3}{4}\) or \(x = \tfrac{1}{2}\).

(ii) \(-2x^2 + 3x + 2 = 0\)

First, multiply the whole equation by \(-1\) to make it easier: \(2x^2 - 3x - 2 = 0\).

Here, \(a = 2, b = -3, c = -2\).

Step 1: \(D = (-3)^2 - 4(2)(-2) = 9 + 16 = 25\).

Step 2: \(D > 0\), so two real and different roots.

Step 3: Formula: \(x = \dfrac{-b \pm \sqrt{D}}{2a} = \dfrac{3 \pm 5}{4}\).

So, \(x = -\tfrac{1}{2}\) or \(x = 2\).

(iii) \(5x^2 - 2x - 10 = 0\)

Here, \(a = 5, b = -2, c = -10\).

Step 1: \(D = (-2)^2 - 4(5)(-10) = 4 + 200 = 204\).

Step 2: \(D > 0\), so two real and different roots.

Step 3: \(\sqrt{204} = 2\sqrt{51}\).

Step 4: Formula: \(x = \dfrac{2 \pm 2\sqrt{51}}{10} = \dfrac{1 \pm \sqrt{51}}{5}\).

(iv) \(\dfrac{1}{2x-3} + \dfrac{1}{x-5} = 1\)

Step 1: Take LCM on the left side:

\(\dfrac{(x-5) + (2x-3)}{(2x-3)(x-5)} = 1\).

So, numerator: \(3x - 8\).

Step 2: Cross multiply: \(3x - 8 = (2x-3)(x-5)\).

Expand: \(2x^2 - 10x - 3x + 15 = 2x^2 - 13x + 15\).

So the equation becomes: \(2x^2 - 16x + 23 = 0\).

Step 3: Find discriminant: \(D = (-16)^2 - 4(2)(23) = 256 - 184 = 72\).

\(\sqrt{72} = 6\sqrt{2}\).

Step 4: Formula: \(x = \dfrac{16 \pm 6\sqrt{2}}{4} = 4 \pm \tfrac{3\sqrt{2}}{2}\).

(v) \(x^2 + 5\sqrt{5}x - 70 = 0\)

Here, \(a = 1, b = 5\sqrt{5}, c = -70\).

Step 1: \(D = (5\sqrt{5})^2 - 4(1)(-70) = 125 + 280 = 405\).

Step 2: \(D > 0\), so real and different roots.

Step 3: \(\sqrt{405} = 9\sqrt{5}\).

Step 4: Formula: \(x = \dfrac{-5\sqrt{5} \pm 9\sqrt{5}}{2}\).

Simplify: roots are \(-7\sqrt{5}\) and \(2\sqrt{5}\).

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 4: Quadatric Equation – Exercise 4.4 | Detailed Answers