If \(\cos A = \dfrac{4}{5}\), then the value of \(\tan A\) is
\(\dfrac{3}{5}\)
\(\dfrac{3}{4}\)
\(\dfrac{4}{3}\)
\(\dfrac{5}{3}\)
If \(\sin A=\dfrac{1}{2}\), then the value of \(\cot A\) is
\(\sqrt{3}\)
\(\dfrac{1}{\sqrt{3}}\)
\(\dfrac{\sqrt{3}}{2}\)
1
The value of \([\csc(75^\circ+\theta)-\sec(15^\circ-\theta)-\tan(55^\circ+\theta)+\cot(35^\circ-\theta)]\) is
\(-1\)
0
1
\(\dfrac{3}{2}\)
Given that \(\sin\theta=\dfrac{a}{b}\), then \(\cos\theta\) equals
\(\dfrac{b}{\sqrt{b^2-a^2}}\)
\(\dfrac{b}{a}\)
\(\dfrac{\sqrt{b^2-a^2}}{b}\)
\(\dfrac{a}{\sqrt{b^2-a^2}}\)
If \(\cos(\alpha+\beta)=0\), then \(\sin(\alpha-\beta)\) can be reduced to
\(\cos\beta\)
\(\cos 2\beta\)
\(\sin\alpha\)
\(\sin 2\alpha\)
The value of \(\tan1^\circ\tan2^\circ\tan3^\circ\,\cdots\,\tan89^\circ\) is
0
1
2
\(\dfrac{1}{2}\)
If \(\cos9\alpha=\sin\alpha\) and \(9\alpha<90^\circ\), then the value of \(\tan5\alpha\) is
\(\dfrac{1}{\sqrt{3}}\)
\(\sqrt{3}\)
1
0
If \(\triangle ABC\) is right angled at \(C\), then the value of \(\cos(A+B)\) is
0
1
\(\dfrac{1}{2}\)
\(\dfrac{\sqrt{3}}{2}\)
If \(\sin A+\sin^2A=1\), then the value of \(\cos^2A+\cos^4A\) is
1
\(\dfrac{1}{2}\)
2
3
Given \(\sin\alpha=\dfrac{1}{2}\) and \(\cos\beta=\dfrac{1}{2}\), the value of \(\alpha+\beta\) is
\(0^\circ\)
\(30^\circ\)
\(60^\circ\)
\(90^\circ\)
The value of \(\left[\dfrac{\sin^2 22^\circ+\sin^2 68^\circ}{\cos^2 22^\circ+\cos^2 68^\circ}+\sin^2 63^\circ+\cos63^\circ\sin27^\circ\right]\) is
3
2
1
0
If \(4\tan\theta=3\), then \(\dfrac{4\sin\theta-\cos\theta}{4\sin\theta+\cos\theta}\) equals
\(\dfrac{2}{3}\)
\(\dfrac{1}{3}\)
\(\dfrac{1}{2}\)
\(\dfrac{3}{4}\)
If \(\sin\theta-\cos\theta=0\), then the value of \(\sin^4\theta+\cos^4\theta\) is
1
\(\dfrac{3}{4}\)
\(\dfrac{1}{2}\)
\(\dfrac{1}{4}\)
\(\sin(45^\circ+\theta)-\cos(45^\circ-\theta)\) equals
\(2\cos\theta\)
0
\(2\sin\theta\)
1
A pole 6 m high casts a shadow \(2\sqrt{3}\) m long on the ground. The Sun’s elevation is
\(60^\circ\)
\(45^\circ\)
\(30^\circ\)
\(90^\circ\)