NCERT Exemplar Solutions - Class 10 - Mathematics - Unit 8: Introduction to Trignometry & its Equation
Exercise 8.1

MCQs on basic trigonometric ratios and identities, with brief justifications (MathJax enabled).

Quick Links to Questions

Question. 1

1. If \(\cos A = \dfrac{4}{5}\), then the value of \(\tan A\) is

(A)

\(\dfrac{3}{5}\)

(B)

\(\dfrac{3}{4}\)

(C)

\(\dfrac{4}{3}\)

(D)

\(\dfrac{5}{3}\)

Answer:
B

Step by Step Solution

Step 1: Recall the definition of cosine in a right triangle.

\(\cos A = \dfrac{\text{Base}}{\text{Hypotenuse}}\)

Here, \(\cos A = \dfrac{4}{5}\).

This means Base = 4 units, Hypotenuse = 5 units.

Step 2: Find the third side (Perpendicular) using Pythagoras theorem.

\( \text{Hypotenuse}^2 = \text{Base}^2 + \text{Perpendicular}^2 \)

\( 5^2 = 4^2 + \text{Perpendicular}^2 \)

\( 25 = 16 + \text{Perpendicular}^2 \)

\( \text{Perpendicular}^2 = 25 - 16 = 9 \)

\( \text{Perpendicular} = 3 \)

Step 3: Recall the definition of tangent.

\( \tan A = \dfrac{\text{Perpendicular}}{\text{Base}} \)

\( \tan A = \dfrac{3}{4} \)

Final Answer: \(\dfrac{3}{4}\) (Option B).

Question. 2

2. If \(\sin A=\dfrac{1}{2}\), then the value of \(\cot A\) is

(A)

\(\sqrt{3}\)

(B)

\(\dfrac{1}{\sqrt{3}}\)

(C)

\(\dfrac{\sqrt{3}}{2}\)

(D)

1

Answer:
A

Step by Step Solution

Step 1: Recall the definition of sine.

\(\sin A = \dfrac{\text{opposite side}}{\text{hypotenuse}}\).

We are given \(\sin A = \dfrac{1}{2}\).

Step 2: Think about the standard angles (30°, 45°, 60°) where sine values are commonly used.

We know: \(\sin 30^\circ = \dfrac{1}{2}\).

So, \(A = 30^\circ\).

Step 3: Now recall the formula for cotangent.

\(\cot A = \dfrac{\cos A}{\sin A}\).

Step 4: At \(A = 30^\circ\),

\(\cos 30^\circ = \dfrac{\sqrt{3}}{2}\) and \(\sin 30^\circ = \dfrac{1}{2}\).

Step 5: Substitute these values:

\(\cot 30^\circ = \dfrac{\cos 30^\circ}{\sin 30^\circ} = \dfrac{\tfrac{\sqrt{3}}{2}}{\tfrac{1}{2}}\).

Step 6: Simplify the fraction:

\(\dfrac{\tfrac{\sqrt{3}}{2}}{\tfrac{1}{2}} = \sqrt{3}\).

Final Answer: \(\cot A = \sqrt{3}\).

Question. 3

3. The value of \([\csc(75^\circ+\theta)-\sec(15^\circ-\theta)-\tan(55^\circ+\theta)+\cot(35^\circ-\theta)]\) is

(A)

\(-1\)

(B)

0

(C)

1

(D)

\(\dfrac{3}{2}\)

Answer:
B

Step by Step Solution

Step 1: Write the given expression clearly.

\[ E = \csc(75^\circ + \theta) - \sec(15^\circ - \theta) - \tan(55^\circ + \theta) + \cot(35^\circ - \theta) \]

Step 2: Recall the trigonometric identities:

  • \(\csc(90^\circ - x) = \sec(x)\)
  • \(\tan(90^\circ - x) = \cot(x)\)

Step 3: Try to write angles so they fit the form \(90^\circ - x\).

Notice that:

  • \(75^\circ + \theta = 90^\circ - (15^\circ - \theta)\)
  • \(55^\circ + \theta = 90^\circ - (35^\circ - \theta)\)

Step 4: Apply the identities:

  • \(\csc(75^\circ + \theta) = \csc[90^\circ - (15^\circ - \theta)] = \sec(15^\circ - \theta)\)
  • \(\tan(55^\circ + \theta) = \tan[90^\circ - (35^\circ - \theta)] = \cot(35^\circ - \theta)\)

Step 5: Substitute these results back into \(E\):

\[ E = \sec(15^\circ - \theta) - \sec(15^\circ - \theta) - \cot(35^\circ - \theta) + \cot(35^\circ - \theta) \]

Step 6: Simplify. Each term cancels with its opposite:

\[ E = 0 \]

Final Answer: The value of the expression is 0.

Question. 4

4. Given that \(\sin\theta=\dfrac{a}{b}\), then \(\cos\theta\) equals

(A)

\(\dfrac{b}{\sqrt{b^2-a^2}}\)

(B)

\(\dfrac{b}{a}\)

(C)

\(\dfrac{\sqrt{b^2-a^2}}{b}\)

(D)

\(\dfrac{a}{\sqrt{b^2-a^2}}\)

Answer:
C

Step by Step Solution

We are given: \(\sin\theta = \dfrac{a}{b}\).

Step 1: Recall the Pythagorean identity of trigonometry:

\[ \sin^2\theta + \cos^2\theta = 1 \]

Step 2: Substitute the value of \(\sin\theta\):

\[ \left(\dfrac{a}{b}\right)^2 + \cos^2\theta = 1 \]

Step 3: Simplify the square:

\[ \dfrac{a^2}{b^2} + \cos^2\theta = 1 \]

Step 4: Move \(\dfrac{a^2}{b^2}\) to the right side:

\[ \cos^2\theta = 1 - \dfrac{a^2}{b^2} \]

Step 5: Write with a common denominator:

\[ \cos^2\theta = \dfrac{b^2}{b^2} - \dfrac{a^2}{b^2} = \dfrac{b^2 - a^2}{b^2} \]

Step 6: Take the square root on both sides:

\[ \cos\theta = \dfrac{\sqrt{b^2 - a^2}}{b} \]

Note: Since \(\theta\) is an acute angle (between \(0^\circ\) and \(90^\circ\)), cosine is positive. So we take only the positive root.

Final Answer: \(\cos\theta = \dfrac{\sqrt{b^2 - a^2}}{b}\) → Option C.

Question. 5

5. If \(\cos(\alpha+\beta)=0\), then \(\sin(\alpha-\beta)\) can be reduced to

(A)

\(\cos\beta\)

(B)

\(\cos 2\beta\)

(C)

\(\sin\alpha\)

(D)

\(\sin 2\alpha\)

Answer:
B

Step by Step Solution

Step 1: We are given that \(\cos(\alpha + \beta) = 0\).

Step 2: Recall that \(\cos 90^\circ = 0\). So, for the cosine function to be zero, the angle must be \(90^\circ\) (or an odd multiple of it). For simplicity, take: \[ \alpha + \beta = 90^\circ \]

Step 3: From this, we can write: \[ \alpha = 90^\circ - \beta \]

Step 4: Now we want to reduce \(\sin(\alpha - \beta)\). Substitute the value of \(\alpha\): \[ \sin(\alpha - \beta) = \sin((90^\circ - \beta) - \beta) \]

Step 5: Simplify inside the bracket: \[ (90^\circ - \beta) - \beta = 90^\circ - 2\beta \]

Step 6: So, \[ \sin(\alpha - \beta) = \sin(90^\circ - 2\beta) \]

Step 7: Use the identity: \(\sin(90^\circ - \theta) = \cos\theta\). Here, \(\theta = 2\beta\). Therefore, \[ \sin(90^\circ - 2\beta) = \cos(2\beta) \]

Final Answer: \[ \sin(\alpha - \beta) = \cos 2\beta \]

Question. 6

6. The value of \(\tan1^\circ\tan2^\circ\tan3^\circ\,\cdots\,\tan89^\circ\) is

(A)

0

(B)

1

(C)

2

(D)

\(\dfrac{1}{2}\)

Answer:
B

Step by Step Solution

Step 1: Write the given product:

\(P = \tan1^\circ \times \tan2^\circ \times \tan3^\circ \times \cdots \times \tan89^\circ\)

Step 2: Recall the trigonometric identity:

\(\tan(90^\circ - \theta) = \cot\theta = \dfrac{1}{\tan\theta}\)

Step 3: Pair the terms in the product. For example:

\(\tan1^\circ \times \tan89^\circ = \tan1^\circ \times \tan(90^\circ - 1^\circ) = \tan1^\circ \times \cot1^\circ = 1\)

\(\tan2^\circ \times \tan88^\circ = 1\)

\(\tan3^\circ \times \tan87^\circ = 1\)

And so on…

Step 4: Continue pairing up all terms this way. Each pair gives value = 1.

Step 5: The only angle left in the middle (which cannot be paired) is:

\(\tan45^\circ = 1\)

Step 6: Multiply everything:

\(P = (1 \times 1 \times 1 \times \cdots) \times 1 = 1\)

Final Answer: The value of the product is 1.

Question. 7

7. If \(\cos9\alpha=\sin\alpha\) and \(9\alpha<90^\circ\), then the value of \(\tan5\alpha\) is

(A)

\(\dfrac{1}{\sqrt{3}}\)

(B)

\(\sqrt{3}\)

(C)

1

(D)

0

Answer:
C

Step by Step Solution

Step 1: Recall the trigonometric identity: \(\sin\theta = \cos(90^\circ - \theta)\).

Step 2: In the question, we are given \(\cos 9\alpha = \sin \alpha\). Using the identity, replace \(\sin\alpha\) by \(\cos(90^\circ - \alpha)\).

So, \(\cos 9\alpha = \cos(90^\circ - \alpha)\).

Step 3: If two cos values are equal, their angles must also be equal (as long as both lie in the given range). Hence, \(9\alpha = 90^\circ - \alpha\).

Step 4: Solve for \(\alpha\):

\(9\alpha + \alpha = 90^\circ\)

\(10\alpha = 90^\circ\)

\(\alpha = 9^\circ\)

Step 5: Now we need \(\tan 5\alpha\).

Substitute \(\alpha = 9^\circ\):

\(\tan 5\alpha = \tan(5 \times 9^\circ) = \tan 45^\circ\).

Step 6: We know \(\tan 45^\circ = 1\).

Final Answer: \(\tan 5\alpha = 1\).

Question. 8

8. If \(\triangle ABC\) is right angled at \(C\), then the value of \(\cos(A+B)\) is

(A)

0

(B)

1

(C)

\(\dfrac{1}{2}\)

(D)

\(\dfrac{\sqrt{3}}{2}\)

Answer:
A

Step by Step Solution

Step 1: In any triangle, the sum of the three angles is always \(180^\circ\).

So, \(A + B + C = 180^\circ\).

Step 2: The question says that the triangle is right-angled at \(C\). That means \(C = 90^\circ\).

Step 3: Substitute \(C = 90^\circ\) in the equation:

\(A + B + 90^\circ = 180^\circ\)

Step 4: Subtract \(90^\circ\) from both sides:

\(A + B = 90^\circ\)

Step 5: Now, we need to find \(\cos(A+B)\).

Since \(A+B = 90^\circ\), we get:

\(\cos(90^\circ) = 0\).

Final Answer: \(\cos(A+B) = 0\).

Question. 9

9. If \(\sin A+\sin^2A=1\), then the value of \(\cos^2A+\cos^4A\) is

(A)

1

(B)

\(\dfrac{1}{2}\)

(C)

2

(D)

3

Answer:
A

Step by Step Solution

Step 1: We are given the equation:

\( \sin A + \sin^2 A = 1 \)

Step 2: Let us put \( \sin A = x \). Then the equation becomes:

\( x + x^2 = 1 \)

Step 3: Rearrange the equation:

\( x^2 + x - 1 = 0 \)

Step 4: Solve this quadratic equation. Using the quadratic formula: \( x = \dfrac{-1 \pm \sqrt{1 + 4}}{2} = \dfrac{-1 \pm \sqrt{5}}{2} \)

Step 5: Since \( \sin A \) must lie between \(-1\) and \(1\), only the value \( x = \dfrac{\sqrt{5} - 1}{2} \) is valid.

Step 6: Now, \( \sin^2 A = x^2 \). So, \( \cos^2 A = 1 - \sin^2 A = 1 - x^2 \).

Step 7: We need \( \cos^2 A + \cos^4 A \).

That is \( (1 - x^2) + (1 - x^2)^2 \).

Step 8: Expand:

\( (1 - x^2) + (1 - 2x^2 + x^4) = 2 - 3x^2 + x^4 \).

Step 9: But from Step 3, we know \( x^2 = 1 - x \). Substitute this into the expression:

\( 2 - 3(1 - x) + (1 - x)^2 \).

Step 10: Simplify:

\( 2 - 3 + 3x + (1 - 2x + x^2) = (0) + x^2 + x \).

Step 11: But from Step 2, \( x^2 + x = 1 \).

Final Answer: \( \cos^2 A + \cos^4 A = 1 \).

Question. 10

10. Given \(\sin\alpha=\dfrac{1}{2}\) and \(\cos\beta=\dfrac{1}{2}\), the value of \(\alpha+\beta\) is

(A)

\(0^\circ\)

(B)

\(30^\circ\)

(C)

\(60^\circ\)

(D)

\(90^\circ\)

Answer:
D

Step by Step Solution

Step 1: We are told that \(\sin\alpha = \tfrac{1}{2}\).

From standard trigonometric values, \(\sin 30^\circ = \tfrac{1}{2}\).

So, \(\alpha = 30^\circ\) (taking the acute angle).

Step 2: We are also told that \(\cos\beta = \tfrac{1}{2}\).

From standard values, \(\cos 60^\circ = \tfrac{1}{2}\).

So, \(\beta = 60^\circ\) (taking the acute angle).

Step 3: Now we add the two angles.

\(\alpha + \beta = 30^\circ + 60^\circ = 90^\circ\).

Final Answer: \(90^\circ\).

Question. 11

11. The value of \(\left[\dfrac{\sin^2 22^\circ+\sin^2 68^\circ}{\cos^2 22^\circ+\cos^2 68^\circ}+\sin^2 63^\circ+\cos63^\circ\sin27^\circ\right]\) is

(A)

3

(B)

2

(C)

1

(D)

0

Answer:
B

Step by Step Solution

Step 1: Look at the first fraction: \[ \dfrac{\sin^2 22^\circ + \sin^2 68^\circ}{\cos^2 22^\circ + \cos^2 68^\circ} \]

Notice that \(68^\circ = 90^\circ - 22^\circ\). So, \(\sin 68^\circ = \cos 22^\circ\).

Therefore, numerator becomes: \(\sin^2 22^\circ + (\cos 22^\circ)^2 = \sin^2 22^\circ + \cos^2 22^\circ = 1\).

Similarly, denominator is: \(\cos^2 22^\circ + (\sin 22^\circ)^2 = 1\).

So the fraction = \(\dfrac{1}{1} = 1\).


Step 2: Now consider the term \(\cos 63^\circ \sin 27^\circ\).

Notice \(27^\circ = 90^\circ - 63^\circ\). So, \(\sin 27^\circ = \cos 63^\circ\).

Therefore, \(\cos 63^\circ \cdot \sin 27^\circ = \cos 63^\circ \cdot \cos 63^\circ = \cos^2 63^\circ\).


Step 3: Look at the other term: \(\sin^2 63^\circ\).

We know the identity: \(\sin^2 \theta + \cos^2 \theta = 1\).

So, \(\sin^2 63^\circ + \cos^2 63^\circ = 1\).


Step 4: Put everything together:

Whole expression = fraction (which is 1) + \(\sin^2 63^\circ + \cos^2 63^\circ\) (which is also 1).

So total = \(1 + 1 = 2\).


Final Answer: \(2\) (Option B)

Question. 12

12. If \(4\tan\theta=3\), then \(\dfrac{4\sin\theta-\cos\theta}{4\sin\theta+\cos\theta}\) equals

(A)

\(\dfrac{2}{3}\)

(B)

\(\dfrac{1}{3}\)

(C)

\(\dfrac{1}{2}\)

(D)

\(\dfrac{3}{4}\)

Answer:
C

Step by Step Solution

Step 1: We are given \(4 \tan\theta = 3\).

So, \(\tan\theta = \dfrac{3}{4}\).

Step 2: Recall that \(\tan\theta = \dfrac{\sin\theta}{\cos\theta}\).

This means we can imagine a right-angled triangle where:

  • Opposite side (to angle \(\theta\)) = 3
  • Adjacent side (to angle \(\theta\)) = 4

Step 3: Now find the hypotenuse using Pythagoras theorem:

\(\text{Hypotenuse} = \sqrt{3^2 + 4^2} = \sqrt{9+16} = \sqrt{25} = 5.\)

Step 4: From the triangle:

  • \(\sin\theta = \dfrac{\text{Opposite}}{\text{Hypotenuse}} = \dfrac{3}{5}\)
  • \(\cos\theta = \dfrac{\text{Adjacent}}{\text{Hypotenuse}} = \dfrac{4}{5}\)

Step 5: Substitute these values into the given expression:

\(\dfrac{4\sin\theta - \cos\theta}{4\sin\theta + \cos\theta} = \dfrac{4\times \dfrac{3}{5} - \dfrac{4}{5}}{4\times \dfrac{3}{5} + \dfrac{4}{5}}\)

Step 6: Simplify numerator and denominator:

Numerator = \(\dfrac{12}{5} - \dfrac{4}{5} = \dfrac{8}{5}\)

Denominator = \(\dfrac{12}{5} + \dfrac{4}{5} = \dfrac{16}{5}\)

Step 7: Ratio = \(\dfrac{\tfrac{8}{5}}{\tfrac{16}{5}} = \dfrac{8}{16} = \dfrac{1}{2}\).

Final Answer: Option C (\(\dfrac{1}{2}\)).

Question. 13

13. If \(\sin\theta-\cos\theta=0\), then the value of \(\sin^4\theta+\cos^4\theta\) is

(A)

1

(B)

\(\dfrac{3}{4}\)

(C)

\(\dfrac{1}{2}\)

(D)

\(\dfrac{1}{4}\)

Answer:
C

Step by Step Solution

Step 1: We are given that \(\sin\theta - \cos\theta = 0\).

This means \(\sin\theta = \cos\theta\).

Step 2: From trigonometry, we know that:

\(\sin^2\theta + \cos^2\theta = 1\) (Pythagoras identity).

Step 3: Since \(\sin\theta = \cos\theta\), let each of them be equal to \(x\).

So, \(\sin\theta = x\) and \(\cos\theta = x\).

Step 4: Substitute into the identity:

\(x^2 + x^2 = 1\)

\(2x^2 = 1\)

\(x^2 = \dfrac{1}{2}\)

\(x = \dfrac{1}{\sqrt{2}}\)

Step 5: Now calculate the required expression:

\(\sin^4\theta + \cos^4\theta = x^4 + x^4 = 2x^4\)

Step 6: Since \(x = \dfrac{1}{\sqrt{2}}\):

\(x^4 = \left(\dfrac{1}{\sqrt{2}}\right)^4 = \dfrac{1}{4}\)

So, \(2x^4 = 2 \times \dfrac{1}{4} = \dfrac{1}{2}\).

Final Answer: \(\sin^4\theta + \cos^4\theta = \dfrac{1}{2}\).

Question. 14

14. \(\sin(45^\circ+\theta)-\cos(45^\circ-\theta)\) equals

(A)

\(2\cos\theta\)

(B)

0

(C)

\(2\sin\theta\)

(D)

1

Answer:
B

Step by Step Solution

Let us simplify step by step:

Step 1: Recall the trigonometric expansion formulas:

  • \(\sin(A+B) = \sin A \cos B + \cos A \sin B\)
  • \(\cos(A-B) = \cos A \cos B + \sin A \sin B\)

Step 2: Apply these formulas one by one.

For \(\sin(45^\circ+\theta)\):

\(\sin(45^\circ+\theta) = \sin 45^\circ \cos \theta + \cos 45^\circ \sin \theta\)

Step 3: We know that \(\sin 45^\circ = \cos 45^\circ = \dfrac{1}{\sqrt{2}}\).

So, \(\sin(45^\circ+\theta) = \dfrac{1}{\sqrt{2}}(\cos \theta + \sin \theta)\).

Step 4: Now expand \(\cos(45^\circ-\theta)\):

\(\cos(45^\circ-\theta) = \cos 45^\circ \cos \theta + \sin 45^\circ \sin \theta\)

Again, \(\cos 45^\circ = \sin 45^\circ = \dfrac{1}{\sqrt{2}}\).

So, \(\cos(45^\circ-\theta) = \dfrac{1}{\sqrt{2}}(\cos \theta + \sin \theta)\).

Step 5: Now subtract the two expressions:

\(\sin(45^\circ+\theta) - \cos(45^\circ-\theta) = \dfrac{1}{\sqrt{2}}(\cos \theta + \sin \theta) - \dfrac{1}{\sqrt{2}}(\cos \theta + \sin \theta)\)

Step 6: Since both terms are exactly the same, their difference is:

\(0\).

Final Answer: Option B (0).

Question. 15

15. A pole 6 m high casts a shadow \(2\sqrt{3}\) m long on the ground. The Sun’s elevation is

(A)

\(60^\circ\)

(B)

\(45^\circ\)

(C)

\(30^\circ\)

(D)

\(90^\circ\)

Answer:
A

Step by Step Solution

Step 1: Draw a right-angled triangle.

- The pole is the vertical side (opposite side) = \(6\,\text{m}\).

- The shadow is the horizontal side (adjacent side) = \(2\sqrt{3}\,\text{m}\).

- The angle of elevation of the Sun is \(\theta\) (the angle between the sunlight and the ground).

Step 2: Use the definition of tangent.

\( \tan\theta = \dfrac{\text{opposite side}}{\text{adjacent side}} \)

Here, opposite = height of pole = \(6\,\text{m}\), adjacent = shadow length = \(2\sqrt{3}\,\text{m}\).

Step 3: Substitute the values.

\( \tan\theta = \dfrac{6}{2\sqrt{3}} \)

Step 4: Simplify the fraction.

\( \dfrac{6}{2\sqrt{3}} = \dfrac{3}{\sqrt{3}} = \sqrt{3} \)

Step 5: Recall the trigonometric ratio.

\( \tan 60^\circ = \sqrt{3} \)

Step 6: Therefore, \( \theta = 60^\circ \).

Final Answer: The Sun’s elevation is \(60^\circ\).

Disclaimer:The questions are taken from NCERT Exemplar, which is the copyright of NCERT. The solutions provided here are prepared independently for educational purposes only. This material is not an official NCERT publication.