Trigonometric Values at Special Angles

Learn the standard trigonometric values for 0°, 30°, 45°, 60°, and 90° with tables, simple derivations, and easy-to-remember patterns.

1. Why Special Angles Are Important

The angles , 30°, 45°, 60°, and 90° appear repeatedly in trigonometry. Their values are standard and do not depend on any specific triangle.

These values are used in simplifying expressions, solving equations, proving identities, and solving geometry/trigonometry problems quickly.

2. Special Angle Values for sin and cos

The easiest way to memorise sin and cos values is through patterns:

  • sin values follow the pattern: \(0, \dfrac{1}{2}, \dfrac{1}{\sqrt{2}}, \dfrac{\sqrt{3}}{2}, 1\)
  • cos values are just the reverse

Here is the complete table:

Anglesin \(\theta\)cos \(\theta\)
01
30°\(\dfrac{1}{2}\)\(\dfrac{\sqrt{3}}{2}\)
45°\(\dfrac{1}{\sqrt{2}}\)\(\dfrac{1}{\sqrt{2}}\)
60°\(\dfrac{\sqrt{3}}{2}\)\(\dfrac{1}{2}\)
90°10

2.1. Quick Pattern for sin Values

You can memorise sin values by using:

\( \sin \theta = \sqrt{0/4},\; \sqrt{1/4},\; \sqrt{2/4},\; \sqrt{3/4},\; \sqrt{4/4} \)

for \(0°, 30°, 45°, 60°, 90°\).

This gives: 0, 1/2, 1/√2, √3/2, 1.

3. Values of tan and cot at Special Angles

tan values can be obtained using:

\( \tan \theta = \dfrac{\sin \theta}{\cos \theta} \)

cot values are the reciprocals of tan.

Angletan \(\theta\)cot \(\theta\)
0Undefined
30°\(\dfrac{1}{\sqrt{3}}\)\(\sqrt{3}\)
45°11
60°\(\sqrt{3}\)\(\dfrac{1}{\sqrt{3}}\)
90°Undefined0

4. Values of sec and cosec

sec and cosec are reciprocals of cos and sin respectively.

Anglesec \(\theta\)cosec \(\theta\)
1Undefined
30°\(\dfrac{2}{\sqrt{3}}\)2
45°\(\sqrt{2}\)\(\sqrt{2}\)
60°2\(\dfrac{2}{\sqrt{3}}\)
90°Undefined1

5. Geometric Derivation for 30°–60° Values

Using an equilateral triangle of side \(2a\), altitude \(a\sqrt{3}\), we can derive 30° and 60° values:

  • \(\sin 30° = 1/2\)
  • \(\cos 30° = \sqrt{3}/2\)
  • \(\sin 60° = \sqrt{3}/2\)
  • \(\cos 60° = 1/2\)

6. Special Angle Table (All Ratios Together)

Full reference table for all six ratios:

Anglesincostancotseccosec
010Undefined1Undefined
30°1/2√3/21/√3√32/√32
45°1/√21/√211√2√2
60°√3/21/2√31/√322/√3
90°10Undefined0Undefined1