NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 11: Area Related To Circles - Exercise 11.4
Question 15

Question. 15

The area of a sector of central angle \(200^\circ\) of a circle is \(770\,\text{cm}^2\). Find the length of the corresponding arc.

Answer:

\(\dfrac{70}{3}\,\pi\,\text{cm} \;\approx\; 73.3\,\text{cm}\)

Detailed Answer with Explanation:

Step 1: Recall the formula for the area of a sector:

\[ A = \dfrac{\theta}{360^\circ} \times \pi r^2 \]

where:

  • \(A\) = area of the sector
  • \(\theta\) = central angle in degrees
  • \(r\) = radius of the circle

Step 2: Substitute the given values:

Area \(A = 770\,\text{cm}^2, \; \theta = 200^\circ, \; \pi = \dfrac{22}{7}\).

So,

\[ 770 = \dfrac{200}{360} \times \pi r^2 \]

Step 3: Simplify the fraction:

\[ \dfrac{200}{360} = \dfrac{5}{9} \]

So,

\[ 770 = \dfrac{5}{9} \pi r^2 \]

Step 4: Solve for \(r^2\):

\[ r^2 = \dfrac{770 \times 9}{5 \pi} \]

Substitute \(\pi = \dfrac{22}{7}\):

\[ r^2 = \dfrac{6930}{5 \times \tfrac{22}{7}} = 441 \]

So, \(r = \sqrt{441} = 21\,\text{cm}.\)

Step 5: Recall the formula for arc length:

\[ L = \dfrac{\theta}{360^\circ} \times 2 \pi r \]

Step 6: Substitute the values:

\[ L = \dfrac{200}{360} \times 2 \pi \times 21 \]

\[ L = \dfrac{5}{9} \times 42 \pi \]

\[ L = \dfrac{70}{3} \pi \, \text{cm} \]

Step 7: Approximate using \(\pi \approx 3.1416\):

\[ L \approx 73.3\,\text{cm} \]

Final Answer: The length of the arc is \(\dfrac{70}{3}\pi\,\text{cm} \;\approx\; 73.3\,\text{cm}.\)

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 11: Area Related To Circles – Exercise 11.4 | Detailed Answers