17. Monthly income of 100 families:
| Income (Rs) | 0–5000 | 5000–10000 | 10000–15000 | 15000–20000 | 20000–25000 | 25000–30000 | 30000–35000 | 35000–40000 |
|---|---|---|---|---|---|---|---|---|
| No. of families | 8 | 26 | 41 | 16 | 3 | 3 | 2 | 1 |
Calculate the modal income.
≈ Rs 11,875
Step 1: Identify the modal class.
The modal class is the class interval with the highest frequency (the largest number of families). Looking at the table, the highest frequency is 41 in the interval 10000–15000. So, the modal class = 10000–15000.
Step 2: Write down the formula for Mode (grouped data):
\[ \text{Mode} = l + \dfrac{(f_1 - f_0)}{(2f_1 - f_0 - f_2)} \times h \]
Step 3: Write down the values:
Step 4: Substitute values in the formula:
\[ \text{Mode} = 10000 + \dfrac{(41 - 26)}{(2 \times 41 - 26 - 16)} \times 5000 \]
Step 5: Simplify step by step:
\(41 - 26 = 15\)
Denominator = \(2 \times 41 - 26 - 16 = 82 - 42 = 40\)
So fraction = \(\tfrac{15}{40}\)
Multiply with 5000: \(\tfrac{15}{40} \times 5000 = 1875\)
Step 6: Add to lower limit:
\(10000 + 1875 = 11875\)
Final Answer: The modal income is ≈ Rs 11,875.