NCERT Exemplar Solutions - Class 10 - Mathematics - Unit 2: Polynomials
Exercise 2.3

Find the zeroes of the following polynomials by factorisation method and verify the relations between the zeroes and the coefficients of the polynomials:

Quick Links to Questions

Question. 1

1. Find the zeroes of \(4x^2-3x-1\) by factorisation and verify relations.

Answer

\(x=1,\; x=-\dfrac{1}{4}\)

Step by Step Solution

Step 1: Split the middle term.

Product = \(4 \times -1 = -4\)

Sum = \(-3\)

Numbers = \(-4\) and \(+1\)

Step 2: Write and group.

\(4x^2 - 3x - 1 = 4x^2 - 4x + x - 1\)

= \((4x^2 - 4x) + (x - 1)\)

= \(4x(x - 1) + 1(x - 1)\)

= \((4x + 1)(x - 1)\)

Step 3: Zeroes.

\(4x + 1 = 0 \Rightarrow x = -\dfrac{1}{4}\)

\(x - 1 = 0 \Rightarrow x = 1\)

Step 4: Verify.

Sum = \(1 - \dfrac{1}{4} = \dfrac{3}{4}\)

= \(-b/a = -(-3)/4\)

Product = \(1 × -\dfrac{1}{4} = -\dfrac{1}{4}\)

= \(c/a = -1/4\)

Question. 2

2. Find the zeroes of \(3x^2+4x-4\) and verify relations.

Answer

\(x=\dfrac{2}{3},\; x=-2\)

Step by Step Solution

Step 1: Split the middle term.

Product = \(3 \times -4 = -12\)

Sum = \(4\)

Numbers = \(6\) and \(-2\)

Step 2: Write and group.

\(3x^2 + 4x - 4 = 3x^2 + 6x - 2x - 4\)

= \((3x^2 + 6x) + (-2x - 4)\)

= \(3x(x + 2) - 2(x + 2)\)

= \((x + 2)(3x - 2)\)

Step 3: Zeroes.

\(x + 2 = 0 \Rightarrow x = -2\)

\(3x - 2 = 0 \Rightarrow x = \dfrac{2}{3}\)

Step 4: Verify.

Sum = \(-2 + \dfrac{2}{3} = -\dfrac{4}{3}\)

= \(-b/a = -4/3\)

Product = \(-2)(\dfrac{2}{3}) = -\dfrac{4}{3}\)

= \(c/a = -4/3\)

Question. 3

3. Find the zeroes of \(5t^2+12t+7\) and verify relations.

Answer

\(t=-1,\; t=-\dfrac{7}{5}\)

Step by Step Solution

Step 1: Factorise directly.

\((5t + 7)(t + 1) = 5t^2 + 12t + 7\)

Step 2: Zeroes.

\(5t + 7 = 0 \Rightarrow t = -\dfrac{7}{5}\)

\(t + 1 = 0 \Rightarrow t = -1\)

Step 3: Verify.

Sum = \(-1 - \dfrac{7}{5} = -\dfrac{12}{5}\)

= \(-b/a = -12/5\)

Product = \((-1)(-\dfrac{7}{5}) = 7/5\)

= \(c/a = 7/5\)

Question. 4

4. Find the zeroes of \(t^3-2t^2-15t\) and verify relations.

Answer

\(t=0,\; t=5,\; t=-3\)

Step by Step Solution

Step 1: Factorise.

Take common factor: \(t(t^2 - 2t - 15)\)

Quadratic: \(t^2 - 2t - 15 = (t - 5)(t + 3)\)

So, \(t(t - 5)(t + 3)\)

Step 2: Zeroes.

\(t = 0,\; t = 5,\; t = -3\)

Step 3: Verify.

Sum = \(0 + 5 + (-3) = 2\)

= \(-a = -(-2)\)

Pairwise sum = \(0×5 + 5×(-3) + (-3)×0 = -15\)

= \(b = -15\)

Product = \(0×5×(-3) = 0\)

= \(-c = 0\)

Question. 5

5. Find the zeroes of \(2x^2+\dfrac{7}{2}x+\dfrac{3}{4}\) and verify relations.

Answer

\(x=-\dfrac{1}{4},\; x=-\dfrac{3}{2}\)

Step by Step Solution

Step 1: Remove fractions.

Multiply whole equation by 4:

\(8x^2 + 14x + 3\)

Step 2: Factorise.

\(8x^2 + 14x + 3 = (4x + 1)(2x + 3)\)

Step 3: Zeroes.

\(4x + 1 = 0 \Rightarrow x = -\dfrac{1}{4}\)

\(2x + 3 = 0 \Rightarrow x = -\dfrac{3}{2}\)

Step 4: Verify.

Sum = \(-\dfrac{1}{4} - \dfrac{3}{2} = -\dfrac{7}{4}\)

= \(-b/a = - (7/2)/2 = -7/4\)

Product = \((-\dfrac{1}{4})(-\dfrac{3}{2}) = 3/8\)

= \(c/a = (3/4)/2 = 3/8\)

Question. 6

6. Find the zeroes of \(4x^2+5\sqrt{2}x-3\) and verify relations.

Answer

\(x=\dfrac{\sqrt{2}}{4},\; x=-\dfrac{3\sqrt{2}}{2}\)

Step by Step Solution

Step 1: Quadratic formula.

\(a = 4, b = 5\sqrt{2}, c = -3\)

Discriminant = \((5\sqrt{2})^2 - 4(4)(-3)\)

= 50 + 48 = 98

\(\sqrt{98} = 7\sqrt{2}\)

Step 2: Roots.

\(x = \dfrac{-5\sqrt{2} + 7\sqrt{2}}{8} = \dfrac{\sqrt{2}}{4}\)

\(x = \dfrac{-5\sqrt{2} - 7\sqrt{2}}{8} = -\dfrac{3\sqrt{2}}{2}\)

Step 3: Verify.

Sum = \(\dfrac{\sqrt{2}}{4} - \dfrac{3\sqrt{2}}{2} = -5\sqrt{2}/4\)

= \(-b/a = -(5\sqrt{2})/4\)

Product = \((\dfrac{\sqrt{2}}{4})(-\dfrac{3\sqrt{2}}{2}) = -3/4\)

= \(c/a = -3/4\)

Question. 7

7. Find the zeroes of \(2s^2-(1+2\sqrt{2})s+\sqrt{2}\) and verify relations.

Answer

\(s=\dfrac{1}{2},\; s=\sqrt{2}\)

Step by Step Solution

Step 1: Check zeroes.

Substitute \(s = \sqrt{2}\)

\(2(2) - (1 + 2\sqrt{2})(\sqrt{2}) + \sqrt{2}\)

= 4 - \sqrt{2} - 4 + \sqrt{2} = 0

So, \(s = \sqrt{2}\) is a root.

Substitute \(s = 1/2\)

\(2(1/4) - (1 + 2\sqrt{2})(1/2) + \sqrt{2}\)

= 1/2 - 1/2 - \sqrt{2} + \sqrt{2} = 0

So, \(s = 1/2\) is a root.

Step 2: Verify.

Sum = \(1/2 + \sqrt{2}\)

= \((1 + 2\sqrt{2})/2 = -b/a\)

Product = \((1/2)(\sqrt{2}) = \sqrt{2}/2\)

= c/a

Question. 8

8. Find the zeroes of \(v^2+4\sqrt{3}v-15\) and verify relations.

Answer

\(v=\sqrt{3},\; v=-5\sqrt{3}\)

Step by Step Solution

Step 1: Quadratic formula.

\(a=1, b=4\sqrt{3}, c=-15\)

Discriminant = \((4\sqrt{3})^2 - 4(1)(-15)\)

= 48 + 60 = 108

\(\sqrt{108} = 6\sqrt{3}\)

Step 2: Roots.

\(v = \dfrac{-4\sqrt{3} + 6\sqrt{3}}{2} = \sqrt{3}\)

\(v = \dfrac{-4\sqrt{3} - 6\sqrt{3}}{2} = -5\sqrt{3}\)

Step 3: Verify.

Sum = \(\sqrt{3} - 5\sqrt{3} = -4\sqrt{3}\)

= -b/a = -4\sqrt{3}

Product = \(\sqrt{3} × -5\sqrt{3} = -15\)

= c/a = -15

Question. 9

9. Find the zeroes of \(y^2+\dfrac{\sqrt{3}}{2}y-5\) and verify relations.

Answer

\(y=\dfrac{-\sqrt{3}+\sqrt{83}}{4},\; y=\dfrac{-\sqrt{3}-\sqrt{83}}{4}\)

Step by Step Solution

Step 1: Identify coefficients.

\(a=1, b=\sqrt{3}/2, c=-5\)

Step 2: Discriminant.

\(b^2 - 4ac = (\sqrt{3}/2)^2 - 4(1)(-5)\)

= 3/4 + 20 = 83/4

\(\sqrt{83/4} = \sqrt{83}/2\)

Step 3: Roots.

\(y = \dfrac{-\sqrt{3}/2 ± \sqrt{83}/2}{2}\)

= \(\dfrac{-\sqrt{3} ± \sqrt{83}}{4}\)

Step 4: Verify.

Sum = \((-\sqrt{3} + \sqrt{83})/4 + (-\sqrt{3} - \sqrt{83})/4\)

= -2\sqrt{3}/4 = -\sqrt{3}/2 = -b/a

Product = \((-\sqrt{3} + \sqrt{83})(-\sqrt{3} - \sqrt{83})/16\)

= (83 - 3)/16 = 80/16 = 5 = c/a

Question. 10

10. Find the zeroes of \(7y^2-\dfrac{11}{3}y-23\) and verify relations.

Answer

\(y=\dfrac{11+\sqrt{5917}}{42},\; y=\dfrac{11-\sqrt{5917}}{42}\)

Step by Step Solution

Step 1: Identify coefficients.

\(a = 7,\; b = -\dfrac{11}{3},\; c = -23\)

Step 2: Discriminant.

\(b^2 - 4ac = \left(-\dfrac{11}{3}\right)^2 - 4(7)(-23)\)

= \(\dfrac{121}{9} + 644\)

= \(\dfrac{5917}{9}\)

So, \(\sqrt{\Delta} = \dfrac{\sqrt{5917}}{3}\)

Step 3: Roots.

\(y = \dfrac{ -b \pm \sqrt{\Delta} }{ 2a }\)

= \(\dfrac{ \dfrac{11}{3} \pm \dfrac{\sqrt{5917}}{3} }{ 14 }\)

= \(\dfrac{ 11 \pm \sqrt{5917} }{ 42 }\)

Step 4: Verify.

Sum = \(\dfrac{11 + \sqrt{5917}}{42} + \dfrac{11 - \sqrt{5917}}{42}\)

= \(\dfrac{22}{42} = \dfrac{11}{21}\)

= \(-\dfrac{b}{a} = -\dfrac{-11/3}{7} = \dfrac{11}{21}\)

Product = \(\dfrac{(11 + \sqrt{5917})(11 - \sqrt{5917})}{42^2}\)

= \(\dfrac{121 - 5917}{1764}\)

= \(\dfrac{-5796}{1764}\)

= \(-\dfrac{23}{7}\)

= \(\dfrac{c}{a}\)

Disclaimer:The questions are taken from NCERT Exemplar, which is the copyright of NCERT. The solutions provided here are prepared independently for educational purposes only. This material is not an official NCERT publication.