NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 5: Arithematic Progressions - Exercise 5.3
Question 21

Question. 21

Find the sum:

(i) \(1+(-2)+(-5)+\cdots+(-236)\)

(ii) \(\big(4-\dfrac{1}{n}\big)+\big(4-\dfrac{2}{n}\big)+\cdots+\big(4-\dfrac{n}{n}\big)\)

(iii) \(\dfrac{a-b}{a+b}+\dfrac{3a-2b}{a+b}+\dfrac{5a-3b}{a+b}+\cdots\) to 11 terms

Answer:

(i) \(-9400\)

(ii) \(\dfrac{7n-1}{2}\)

(iii) \(\dfrac{121a-66b}{a+b}\)

Detailed Answer with Explanation:

(i)

We are given the series: \(1, -2, -5, \dots, -236\).

This is an arithmetic progression (AP) because the difference between terms is constant.

First term (\(a\)) = 1.

Common difference (\(d\)) = \(-2 - 1 = -3\).

Last term (\(l\)) = -236.

Formula for last term: \(l = a + (n-1)d\).

Substitute: \(-236 = 1 + (n-1)(-3)\).

\(-236 - 1 = -3(n-1) \Rightarrow -237 = -3(n-1)\).

Divide both sides: \(n-1 = 79 \Rightarrow n = 80\).

Now, sum of \(n\) terms: \(S_n = \dfrac{n}{2}(a + l)\).

\(S_{80} = \dfrac{80}{2}(1 + (-236)) = 40(-235) = -9400\).

So, the sum is \(-9400\).


(ii)

The terms are: \(\big(4-\dfrac{1}{n}\big), \big(4-\dfrac{2}{n}\big), \dots, \big(4-\dfrac{n}{n}\big)\).

We can write the sum as:

\(S = \sum_{k=1}^{n} \left(4 - \dfrac{k}{n}\right)\).

Split into two parts:

\(S = \sum_{k=1}^{n} 4 - \sum_{k=1}^{n} \dfrac{k}{n}\).

First part: \(\sum_{k=1}^{n} 4 = 4n\).

Second part: \(\sum_{k=1}^{n} \dfrac{k}{n} = \dfrac{1}{n} \sum_{k=1}^{n} k\).

But \(\sum_{k=1}^{n} k = \dfrac{n(n+1)}{2}\).

So, second part = \(\dfrac{1}{n} \times \dfrac{n(n+1)}{2} = \dfrac{n+1}{2}\).

Therefore, \(S = 4n - \dfrac{n+1}{2}\).

Simplify: \(S = \dfrac{8n - (n+1)}{2} = \dfrac{7n - 1}{2}\).

So, the sum is \(\dfrac{7n-1}{2}\).


(iii)

We are asked to find the sum of 11 terms:

\(\dfrac{a-b}{a+b}, \dfrac{3a-2b}{a+b}, \dfrac{5a-3b}{a+b}, \dots\)

Notice that denominator in every term is the same: \((a+b)\).

So, we only need to add the numerators first.

Numerators: \((a-b), (3a-2b), (5a-3b), \dots\)

This forms an arithmetic progression (AP).

First numerator (\(a_1\)) = \(a-b\).

Second numerator = \(3a - 2b\).

So, common difference \(d = (3a - 2b) - (a - b) = 2a - b\).

Number of terms = 11.

Sum of numerators: \(S_{11} = \dfrac{11}{2}[2a_1 + (11-1)d]\).

Substitute: \(S_{11} = \dfrac{11}{2}[2(a-b) + 10(2a-b)]\).

\(= \dfrac{11}{2}[2a - 2b + 20a - 10b]\).

\(= \dfrac{11}{2}[22a - 12b]\).

\(= \dfrac{11}{2} \times 2(11a - 6b)\).

\(= 11(11a - 6b) = 121a - 66b\).

Now divide by denominator \((a+b)\).

So, required sum = \(\dfrac{121a - 66b}{a+b}\).

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 5: Arithematic Progressions – Exercise 5.3 | Detailed Answers