NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.3
Question 2

Question. 2

Prove that \(\dfrac{\tan A}{1+\sec A}-\dfrac{\tan A}{1-\sec A}=2\csc A\).

Answer:

\(\displaystyle \dfrac{\tan A}{1+\sec A}-\dfrac{\tan A}{1-\sec A}=2\csc A\).

Handwritten Notes

Video Explanation:

Detailed Answer with Explanation:

Step 1: Start with the Left Hand Side (LHS):

\(\displaystyle \dfrac{\tan A}{1+\sec A} - \dfrac{\tan A}{1-\sec A}\)

Step 2: Take a common denominator.

The denominators are \((1+\sec A)\) and \((1-\sec A)\). Their common denominator is \((1+\sec A)(1-\sec A)\).

Step 3: Write with the common denominator:

\(\displaystyle \dfrac{\tan A(1-\sec A) - \tan A(1+\sec A)}{(1+\sec A)(1-\sec A)}\)

Step 4: Expand the numerator:

\(= \tan A(1-\sec A) - \tan A(1+\sec A)\)

\(= \tan A - \tan A\sec A - \tan A - \tan A\sec A\)

\(= (\tan A - \tan A) - (\tan A\sec A + \tan A\sec A)\)

\(= 0 - 2\tan A\sec A\)

\(= -2\tan A\sec A\)

Step 5: Simplify the denominator:

\((1+\sec A)(1-\sec A) = 1 - \sec^2 A\)

Step 6: So now we have:

\(\displaystyle \dfrac{-2\tan A\sec A}{1 - \sec^2 A}\)

Step 7: Recall the trigonometric identity:

\(1 + \tan^2 A = \sec^2 A\)

So, \(1 - \sec^2 A = -\tan^2 A\).

Step 8: Substitute this into the denominator:

\(\displaystyle \dfrac{-2\tan A\sec A}{-\tan^2 A} = \dfrac{2\tan A\sec A}{\tan^2 A}\)

Step 9: Split the fraction:

\(= 2 \cdot \dfrac{\sec A}{\tan A}\)

Step 10: Write \(\sec A = \dfrac{1}{\cos A}\) and \(\tan A = \dfrac{\sin A}{\cos A}\):

\(\dfrac{\sec A}{\tan A} = \dfrac{\dfrac{1}{\cos A}}{\dfrac{\sin A}{\cos A}} = \dfrac{1}{\sin A}\)

Step 11: So we get:

\(2 \cdot \dfrac{1}{\sin A} = 2\csc A\)

Final Result: LHS = RHS = \(2\csc A\). Hence proved

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.3 | Detailed Answers