NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.3
Question 9

Question. 9

If \(\sqrt{3}\,\tan\theta=1\), find \(\sin^2\theta-\cos^2\theta\).

Answer:

\(\displaystyle \sin^2\theta-\cos^2\theta=-\dfrac{1}{2}.\)

Handwritten Notes

Video Explanation:

Detailed Answer with Explanation:

Step 1: We are given: \(\sqrt{3}\,\tan\theta = 1\).

Divide both sides by \(\sqrt{3}\):

\(\tan\theta = \dfrac{1}{\sqrt{3}}\).

Step 2: Recall the standard values of tan:

  • \(\tan 30^\circ = \dfrac{1}{\sqrt{3}}\)
  • \(\tan 45^\circ = 1\)
  • \(\tan 60^\circ = \sqrt{3}\)

So, \(\theta = 30^\circ\) (since we consider an acute angle).

Step 3: Now we need to calculate \(\sin^2\theta - \cos^2\theta\).

Substitute \(\theta = 30^\circ\):

\(\sin^2 30^\circ - \cos^2 30^\circ\).

Step 4: Use the standard values of sine and cosine:

  • \(\sin 30^\circ = \dfrac{1}{2}\)
  • \(\cos 30^\circ = \dfrac{\sqrt{3}}{2}\)

Step 5: Square them:

\(\sin^2 30^\circ = \left(\dfrac{1}{2}\right)^2 = \dfrac{1}{4}\)

\(\cos^2 30^\circ = \left(\dfrac{\sqrt{3}}{2}\right)^2 = \dfrac{3}{4}\)

Step 6: Subtract:

\(\sin^2 30^\circ - \cos^2 30^\circ = \dfrac{1}{4} - \dfrac{3}{4} = -\dfrac{2}{4} = -\dfrac{1}{2}.\)

Final Answer: \(\sin^2\theta - \cos^2\theta = -\dfrac{1}{2}\).

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.3 | Detailed Answers