NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.4
Question 1

Question. 1

If \(\csc\theta + \cot\theta = p\), prove that \(\cos\theta = \dfrac{p^2-1}{p^2+1}\).

Answer:

\(\cos\theta = \dfrac{p^2-1}{p^2+1}\).

Detailed Answer with Explanation:

Step 1: We are given that:

\[ \csc\theta + \cot\theta = p \]

Here, \(\csc\theta = \dfrac{1}{\sin\theta}\) and \(\cot\theta = \dfrac{\cos\theta}{\sin\theta}\).

Step 2: Multiply the given expression by its conjugate \((\csc\theta - \cot\theta)\):

\[(\csc\theta + \cot\theta)(\csc\theta - \cot\theta) = \csc^2\theta - \cot^2\theta.\]

Step 3: Recall the identity:

\[ \csc^2\theta - \cot^2\theta = 1. \]

So,

\[ (p)(\csc\theta - \cot\theta) = 1. \]

Therefore,

\[ \csc\theta - \cot\theta = \dfrac{1}{p}. \]

Step 4: Now we have two equations:

\[ \csc\theta + \cot\theta = p \]

\[ \csc\theta - \cot\theta = \dfrac{1}{p} \]

Step 5: Add these two equations:

\[ (\csc\theta + \cot\theta) + (\csc\theta - \cot\theta) = p + \dfrac{1}{p} \]

\[ 2\csc\theta = p + \dfrac{1}{p} \]

\[ \csc\theta = \dfrac{p + \tfrac{1}{p}}{2} \]

Step 6: Subtract the two equations:

\[ (\csc\theta + \cot\theta) - (\csc\theta - \cot\theta) = p - \dfrac{1}{p} \]

\[ 2\cot\theta = p - \dfrac{1}{p} \]

\[ \cot\theta = \dfrac{p - \tfrac{1}{p}}{2} \]

Step 7: Use the relation:

\[ \cos\theta = \dfrac{\cot\theta}{\csc\theta}. \]

Step 8: Substitute the values of \(\cot\theta\) and \(\csc\theta\):

\[ \cos\theta = \dfrac{\dfrac{p - \tfrac{1}{p}}{2}}{\dfrac{p + \tfrac{1}{p}}{2}} \]

The 2’s cancel out, so:

\[ \cos\theta = \dfrac{p - \tfrac{1}{p}}{p + \tfrac{1}{p}} \]

Step 9: Simplify the fraction by multiplying numerator and denominator by \(p\):

\[ \cos\theta = \dfrac{p^2 - 1}{p^2 + 1} \]

Final Answer:

\[ \cos\theta = \dfrac{p^2 - 1}{p^2 + 1} \]

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.4 | Detailed Answers