NCERT Exemplar Solutions
Class 10 - Mathematics - CHAPTER 8: Introduction to Trignometry and Its Applications - Exercise 8.4
Question 5

Question. 5

Given \(\sin\theta+2\cos\theta=1\), show that \(|2\sin\theta-\cos\theta|=2\).

Answer:

\(|2\sin\theta-\cos\theta|=2\).

Detailed Answer with Explanation:

Step 1: Recall a useful identity:

For any real numbers \(a, b, c, d\):

\((a\sin\theta + b\cos\theta)^2 + (c\sin\theta + d\cos\theta)^2 = (a^2+c^2)\sin^2\theta + (b^2+d^2)\cos^2\theta + 2(ab+cd)\sin\theta\cos\theta.\)

This is often used to combine expressions involving sine and cosine.

Step 2: Consider the two expressions in the question:

  • First expression: \(\sin\theta + 2\cos\theta\)
  • Second expression: \(2\sin\theta - \cos\theta\)

Step 3: Square and add them:

\[(2\sin\theta - \cos\theta)^2 + (\sin\theta + 2\cos\theta)^2.\]

Step 4: Expand each square:

\((2\sin\theta - \cos\theta)^2 = 4\sin^2\theta - 4\sin\theta\cos\theta + \cos^2\theta\)

\((\sin\theta + 2\cos\theta)^2 = \sin^2\theta + 4\sin\theta\cos\theta + 4\cos^2\theta\)

Step 5: Add them together:

\(4\sin^2\theta + \sin^2\theta = 5\sin^2\theta\)

\(\cos^2\theta + 4\cos^2\theta = 5\cos^2\theta\)

The cross terms: \(-4\sin\theta\cos\theta + 4\sin\theta\cos\theta = 0\)

So the sum is:

\(5\sin^2\theta + 5\cos^2\theta = 5(\sin^2\theta + \cos^2\theta).\)

Step 6: Recall the fundamental trigonometric identity:

\(\sin^2\theta + \cos^2\theta = 1\)

So, the sum becomes:

\(5(1) = 5\).

Step 7: We now know:

\((2\sin\theta - \cos\theta)^2 + (\sin\theta + 2\cos\theta)^2 = 5.\)

Step 8: From the question, we are given:

\(\sin\theta + 2\cos\theta = 1.\)

Therefore:

\((\sin\theta + 2\cos\theta)^2 = 1^2 = 1.\)

Step 9: Substitute this into the earlier equation:

\((2\sin\theta - \cos\theta)^2 + 1 = 5\)

Step 10: Simplify:

\((2\sin\theta - \cos\theta)^2 = 4\)

Step 11: Take square root:

\(|2\sin\theta - \cos\theta| = \sqrt{4} = 2.\)

Final Answer:

Hence, \(|2\sin\theta - \cos\theta| = 2.\)

(The absolute value is used because the expression could be +2 or -2 depending on the quadrant of \(\theta\).)

NCERT Exemplar Solutions Class 10 – Mathematics – CHAPTER 8: Introduction to Trignometry and Its Applications – Exercise 8.4 | Detailed Answers