NCERT Solutions
Class 10 - Mathematics - Chapter 8: INTRODUCTION TO TRIGONOMETRY - Exercise 8.1
Question 7

Question. 7

If cot θ = \(\dfrac{7}{8}\), evaluate:

(i) \(\dfrac{(1 + \sin θ)(1 - \sin θ)}{(1 + \cos θ)(1 - \cos θ)}\)

(ii) cot² θ

Answer:

(i) \(\dfrac{49}{64}\)

(ii) \(\dfrac{49}{64}\)

Video Explanation:

Detailed Answer with Explanation:

Given: \(\cot \theta = \dfrac{7}{8}\)

To find:

(i) \(\dfrac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)}\)

(ii) \(\cot^2 \theta\)

Step 1: Form a right triangle using \(\cot\theta\)

In a right-angled triangle (with angle \(\theta\)),

\(\cot\theta = \dfrac{\text{adjacent}}{\text{opposite}}\).

So take adjacent side = 7 units and opposite side = 8 units.

Step 2: Find the hypotenuse using Pythagoras theorem

Let hypotenuse be \(h\). Then

\(h^2 = 7^2 + 8^2 = 49 + 64 = 113\)

\(\Rightarrow h = \sqrt{113}\).

Step 3: Write \(\sin\theta\) and \(\cos\theta\) using sides

\(\sin\theta = \dfrac{\text{opposite}}{\text{hypotenuse}} = \dfrac{8}{\sqrt{113}}\)

\(\cos\theta = \dfrac{\text{adjacent}}{\text{hypotenuse}} = \dfrac{7}{\sqrt{113}}\)

Step 4: Evaluate part (i)

First expand each product:

\((1+\sin\theta)(1-\sin\theta) = 1 - (\sin\theta)^2\)

\((1+\cos\theta)(1-\cos\theta) = 1 - (\cos\theta)^2\)

Now substitute \(\sin\theta = \dfrac{8}{\sqrt{113}}\) and \(\cos\theta = \dfrac{7}{\sqrt{113}}\):

Numerator:

\(1 - (\sin\theta)^2 = 1 - \left(\dfrac{8}{\sqrt{113}}\right)^2 = 1 - \dfrac{64}{113} = \dfrac{49}{113}\)

Denominator:

\(1 - (\cos\theta)^2 = 1 - \left(\dfrac{7}{\sqrt{113}}\right)^2 = 1 - \dfrac{49}{113} = \dfrac{64}{113}\)

Therefore,

\(\dfrac{(1 + \sin\theta)(1 - \sin\theta)}{(1 + \cos\theta)(1 - \cos\theta)} = \dfrac{\frac{49}{113}}{\frac{64}{113}} = \dfrac{49}{64}\)

So, (i) = \(\dfrac{49}{64}\).

Step 5: Evaluate part (ii)

\(\cot^2\theta = \left(\dfrac{7}{8}\right)^2 = \dfrac{49}{64}\).

Final Answers:

(i) \(\dfrac{49}{64}\)

(ii) \(\dfrac{49}{64}\)

NCERT Solutions – Chapter-wise Questions & Answers