NCERT Solutions
Class 10 - Mathematics - Chapter 8: INTRODUCTION TO TRIGONOMETRY - Exercise 8.1
Question 9

Question. 9

In triangle ABC, right-angled at B, if tan A = \(\dfrac{1}{\sqrt{3}}\), find:

(i) sin A cos C + cos A sin C

(ii) cos A cos C − sin A sin C

Answer:

(i) 1

(ii) 0

Video Explanation:

Detailed Answer with Explanation:

Given: In right triangle \(\triangle ABC\), \(\angle B = 90^\circ\) and \(\tan A = \dfrac{1}{\sqrt{3}}\).

Step 1: Convert \(\tan A\) into side ratio

In a right-angled triangle, \(\tan A = \dfrac{\text{opposite}}{\text{adjacent}} = \dfrac{BC}{AB}\).

So, \(\dfrac{BC}{AB} = \dfrac{1}{\sqrt{3}}\). Take \(BC = 1\) and \(AB = \sqrt{3}\) (any proportional sides work).

Step 2: Find the hypotenuse using Pythagoras theorem

\(AC^2 = AB^2 + BC^2\)

\(AC^2 = (\sqrt{3})^2 + 1^2 = 3 + 1 = 4\)

\(\Rightarrow AC = 2\).

Step 3: Write \(\sin\) and \(\cos\) using side ratios

For angle \(A\):

\(\sin A = \dfrac{BC}{AC} = \dfrac{1}{2}\), \(\cos A = \dfrac{AB}{AC} = \dfrac{\sqrt{3}}{2}\).

For angle \(C\): (opposite to \(C\) is \(AB\), adjacent to \(C\) is \(BC\))

\(\sin C = \dfrac{AB}{AC} = \dfrac{\sqrt{3}}{2}\), \(\cos C = \dfrac{BC}{AC} = \dfrac{1}{2}\).

Step 4: Substitute to find the required values

(i) \(\sin A\cos C + \cos A\sin C\)

= \(\left(\dfrac{1}{2}\right)\left(\dfrac{1}{2}\right) + \left(\dfrac{\sqrt{3}}{2}\right)\left(\dfrac{\sqrt{3}}{2}\right)\)

= \(\dfrac{1}{4} + \dfrac{3}{4} = 1\).

So, (i) = 1.

(ii) \(\cos A\cos C - \sin A\sin C\)

= \(\left(\dfrac{\sqrt{3}}{2}\right)\left(\dfrac{1}{2}\right) - \left(\dfrac{1}{2}\right)\left(\dfrac{\sqrt{3}}{2}\right)\)

= \(\dfrac{\sqrt{3}}{4} - \dfrac{\sqrt{3}}{4} = 0\).

So, (ii) = 0.

NCERT Solutions – Chapter-wise Questions & Answers