Properties of Inverse Trigonometric Functions

Learn the important algebraic properties, symmetry rules and transformation formulas of inverse trigonometric functions like sin⁻¹x, cos⁻¹x, tan⁻¹x and others.

1. Basic Algebraic Properties

Inverse trigonometric functions undo their respective trigonometric functions, but only within the principal value branches.

  • \( \sin(\sin^{-1} x) = x \) for \(x \in [-1,1]\)
  • \( \cos(\cos^{-1} x) = x \) for \(x \in [-1,1]\)
  • \( \tan(\tan^{-1} x) = x \) for all real x

However:

  • \( \sin^{-1}(\sin x) \neq x \) in general
  • \( \cos^{-1}(\cos x) \neq x \) in general

because the output must lie in the principal value interval.

2. Symmetry and Sign Properties

These properties help simplify expressions involving negative inputs.

  • \( \sin^{-1}(-x) = -\sin^{-1}(x) \) (odd function behaviour)
  • \( \tan^{-1}(-x) = -\tan^{-1}(x) \)
  • \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \) (reflection property)
  • \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \)

3. Reciprocal Function Properties

Using the reciprocal relations of sec, cosec and cot:

  • \( \sec^{-1} x = \cos^{-1} \left(\dfrac{1}{x}\right) \), for \(|x| \geq 1\)
  • \( \csc^{-1} x = \sin^{-1} \left(\dfrac{1}{x}\right) \), for \(|x| \geq 1\)
  • \( \cot^{-1} x = \tan^{-1} \left(\dfrac{1}{x}\right) \), for positive x

4. Complementary Angle Properties

These properties connect inverse sine and inverse cosine, inverse tangent and inverse cotangent.

  • \( \sin^{-1} x + \cos^{-1} x = \dfrac{\pi}{2} \)
  • \( \tan^{-1} x + \cot^{-1} x = \dfrac{\pi}{2} \)

5. Addition and Subtraction Properties

These are useful for simplifying expressions involving sums or differences:

  • \( \tan^{-1} a + \tan^{-1} b = \tan^{-1}\left(\dfrac{a + b}{1 - ab}\right) \) if \(ab < 1\)
  • \( \tan^{-1} a - \tan^{-1} b = \tan^{-1}\left(\dfrac{a - b}{1 + ab}\right) \)

6. Double Angle Properties

Inverse functions also follow double-angle-like transformations.

  • \( 2\sin^{-1} x = \sin^{-1}(2x\sqrt{1 - x^2}) \)
  • \( 2\tan^{-1} x = \tan^{-1}\left(\dfrac{2x}{1 - x^2}\right) \)

7. Examples to Understand the Properties

Example 1: Simplify \(\sin^{-1}(-\dfrac{1}{2})\).

\( \sin^{-1}(-\dfrac{1}{2}) = -\sin^{-1}(\dfrac{1}{2}) = -\dfrac{\pi}{6} \)


Example 2: Evaluate \(\cos^{-1}(-\dfrac{1}{2})\).

\( \cos^{-1}(-\dfrac{1}{2}) = \pi - \cos^{-1}(\dfrac{1}{2}) = \pi - \dfrac{\pi}{3} = \dfrac{2\pi}{3} \)