1. Basic Algebraic Properties
Inverse trigonometric functions undo their respective trigonometric functions, but only within the principal value branches.
- \( \sin(\sin^{-1} x) = x \) for \(x \in [-1,1]\)
- \( \cos(\cos^{-1} x) = x \) for \(x \in [-1,1]\)
- \( \tan(\tan^{-1} x) = x \) for all real x
However:
- \( \sin^{-1}(\sin x) \neq x \) in general
- \( \cos^{-1}(\cos x) \neq x \) in general
because the output must lie in the principal value interval.
2. Symmetry and Sign Properties
These properties help simplify expressions involving negative inputs.
- \( \sin^{-1}(-x) = -\sin^{-1}(x) \) (odd function behaviour)
- \( \tan^{-1}(-x) = -\tan^{-1}(x) \)
- \( \cos^{-1}(-x) = \pi - \cos^{-1}(x) \) (reflection property)
- \( \cot^{-1}(-x) = \pi - \cot^{-1}(x) \)
3. Reciprocal Function Properties
Using the reciprocal relations of sec, cosec and cot:
- \( \sec^{-1} x = \cos^{-1} \left(\dfrac{1}{x}\right) \), for \(|x| \geq 1\)
- \( \csc^{-1} x = \sin^{-1} \left(\dfrac{1}{x}\right) \), for \(|x| \geq 1\)
- \( \cot^{-1} x = \tan^{-1} \left(\dfrac{1}{x}\right) \), for positive x
4. Complementary Angle Properties
These properties connect inverse sine and inverse cosine, inverse tangent and inverse cotangent.
- \( \sin^{-1} x + \cos^{-1} x = \dfrac{\pi}{2} \)
- \( \tan^{-1} x + \cot^{-1} x = \dfrac{\pi}{2} \)
5. Addition and Subtraction Properties
These are useful for simplifying expressions involving sums or differences:
- \( \tan^{-1} a + \tan^{-1} b = \tan^{-1}\left(\dfrac{a + b}{1 - ab}\right) \) if \(ab < 1\)
- \( \tan^{-1} a - \tan^{-1} b = \tan^{-1}\left(\dfrac{a - b}{1 + ab}\right) \)
6. Double Angle Properties
Inverse functions also follow double-angle-like transformations.
- \( 2\sin^{-1} x = \sin^{-1}(2x\sqrt{1 - x^2}) \)
- \( 2\tan^{-1} x = \tan^{-1}\left(\dfrac{2x}{1 - x^2}\right) \)
7. Examples to Understand the Properties
Example 1: Simplify \(\sin^{-1}(-\dfrac{1}{2})\).
\( \sin^{-1}(-\dfrac{1}{2}) = -\sin^{-1}(\dfrac{1}{2}) = -\dfrac{\pi}{6} \)
Example 2: Evaluate \(\cos^{-1}(-\dfrac{1}{2})\).
\( \cos^{-1}(-\dfrac{1}{2}) = \pi - \cos^{-1}(\dfrac{1}{2}) = \pi - \dfrac{\pi}{3} = \dfrac{2\pi}{3} \)